我正在教高中生如何通过取消因数来简化有理表达式。
取消的表达式应为红色(包括 L/R 括号),但分数线不为红色。下图显示了我目前能够实现的目标以及仍需应用红色的地方:
MWE 如下。非常感谢您的帮助(我的学生也一样)。
\documentclass[12pt]{exam}
\printanswers
% un-comment to print solutions.
\renewcommand{\solutiontitle}{}
\usepackage{multirow, tabularx}
\newcolumntype{C}{>{\centering\arraybackslash}X}
\usepackage[table]{xcolor}
\usepackage{amsmath}
\usepackage{cancel}
\usepackage{framed}
\usepackage{multicol}
\usepackage{tasks}
\usepackage[a4paper,margin=0.5in,include head]{geometry}
\everymath{\displaystyle}
\setlength\parindent{1em}
\pagestyle{head}
\header{Algebra II Review Ch 3.2: Operations Rational Expressions and Equations: K E Y}
{}
{01/13-14/21}
\newcommand{\pagetop}{%
\noindent
\fbox{\fbox{\parbox{\dimexpr\textwidth-4\fboxsep-4\fboxrule}{
\textbf {Obj. 3.2.a: I can simplify factored rational expressions and find their restrictions.
\bigskip
\bigskipSimplify expression and state the excluded values (+1 pt numerator, +1 pt denominator, +1 pt restrictions.) each equation. Show all work/steps on this page.}
}}}
\bigskip
\vspace{0.5mm}
}
\settasks{after-item-skip=1em,
after-skip=2cm,
label-width=2em,
item-indent=3em,
label=(\arabic*),
column-sep=2em
}
% ------------ DOCUMENT STARTS HERE---------- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%definition for bigskip = 1 line to replace all \bigskip
\def\bigskip{\vskip\bigskipamount}
\begin{tasks}
[style=enumerate](2)
% Prob #1
\task $\dfrac{10k^2+32k+24}{15k+18}$
\begin{solutionorbox}[5cm]
Factor 2 out of the numerator.\bigskip
$\dfrac{2(5k^2+16k+12)} {15k+18}$\bigskip
The 5 in front of $5k^2$ means this is a non-monic quadratic trinomial. So use the box method to complete the factorization.
\newcommand\mcc[1]{\multicolumn{1}{c}{#1}}
\hspace{1cm}
\renewcommand\arraystretch{2}
\begin{tabular}{ c | c | c | }
\mcc{} & \mcc{\textcolor{red}{$5k$}} & \mcc{\textcolor{red}{$+6$}} \\
\cline{2-3}
\textcolor{red}{$k$} & $5k^2$ & $6$ \\
\cline{2-3}
\textcolor{red}{$+2$} & $10k$ & $12$ \\
\cline{2-3}
\end{tabular}
\vspace{0.2cm}
Numerator factors to $\color{red}\dfrac{(5k+6)(k+2)}{\color{black} 15k+18}$
Now factor the bottom:
\hspace{2cm}$3(5k+6)$
\vspace{0.25cm}
Cancel common factors (this creates a HOLE in the graph):
\hspace{2cm}
$\dfrac{\cancel{(5k+6)}(k+2)}{3\cancel{(5k+6)}}$
\vspace{0.25cm}
Simplified form: $\dfrac{(k+2)}{3}$
\textcolor{blue}{\textbf {Reminder:}}
\textbf{Zeros occur on top} (in the numerator).
\textbf{VA's (vertical asymptotes) are restrictions in the denominator}...to prevent division by $0$.
\textcolor{red}
{Zeros: $k=-2$}
\textcolor{red}
{Holes: $k=-6/5$}
\textcolor{red}
{VA: $none$}
\end{solutionorbox}
\vspace{0.25cm}
% Prob #1
\task $\dfrac{5k^2+10k+24}{6k+12}$
\begin{solutionorbox}[5cm]
step-by-step solution goes here
\end{solutionorbox}
\end{tasks}
\end{document}
答案1
\textcolor{red}{<stuff>}
如果没有其他可用的范围,则主要需要用红色突出显示各个组件:
\documentclass{article}
\usepackage[table]{xcolor}
\usepackage{amsmath}
\usepackage{cancel}
\begin{document}
Numerator factors to
\[
\dfrac{\color{red}(5k + 6)(k + 2)}{15k + 18}
\]
Cancel common factors (this creates a HOLE in the graph):
\[
\dfrac{\textcolor{red}{\cancel{(5k + 6)}}(k + 2)}{3 \textcolor{red}{\cancel{(5k + 6)}}}
\]
\end{document}