答案1
考虑这个使用默认11pt
字体和 a 43
(或 4:3 纵横比,或12.8cm
x9.6cm
页面尺寸)的最小示例:
\documentclass{beamer}
\usetheme{Warsaw}
\begin{document}
\begin{frame}
\frametitle{There Is No Largest Prime Number - 11pt}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{proof}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime number not in the first $p$ numbers.\qedhere
\end{enumerate}
\end{proof}
\end{frame}
\end{document}
您可以选择8pt
字体选项,并调整页面大小以获得相似的纵横比,但略小(缩放系数8/11
为xfp
):
\documentclass[8pt]{beamer}
\usepackage{xfp}
\makeatletter
% Taken from beamer.cls' default geometry settings
% http://mirrors.ctan.org/macros/latex/contrib/beamer/base/beamer.cls
\geometry{%
papersize={\fpeval{\beamer@paperwidth*8/11}pt,\fpeval{\beamer@paperheight*8/11}pt},
hmargin=\fpeval{8/11}cm,% 1cm
vmargin=0cm,%
head=\fpeval{0.5*8/11}cm,% 0.5cm
headsep=0pt,%
foot=\fpeval{0.5*8/11}cm% 0.5cm
}
\makeatother
\usetheme{Warsaw}
\begin{document}
\begin{frame}
\frametitle{There Is No Largest Prime Number - 8pt}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{proof}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime number not in the first $p$ numbers.\qedhere
\end{enumerate}
\end{proof}
\end{frame}
\end{document}
下图粗略地展示了两者之间的区别:
您可能还必须更改其他长度,因为缩放不能单方面转换为与字体相关的概念。但是,从视觉上讲,显示非常相似就足够了。
答案2
最简单的方法是使用OpticalSize=
字体功能(来自fontspec
)和支持该功能的字体(例如 Latin Modern 或 TeX Gyre 系列)。这不会造成文档大小缩小的副作用。
确实没有理由不使用现代软件beamer
,因为您不会beamer
向要求您使用 PDFTeX 的出版商提交演示文稿。
\documentclass{beamer}
\tracinglostchars=2
\usetheme{Warsaw}
\usefonttheme{professionalfonts}
\usepackage{unicode-math}
\defaultfontfeatures{ Ligatures=TeX, OpticalSize=20 }
\setmainfont{Latin Modern Roman}
\setsansfont{Latin Modern Sans}
\setmathfont{Latin Modern Math}
\setmathfont{XITS Math}[range=\QED, Scale=MatchUppercase]
\renewcommand\qedsymbol{\ensuremath{\QED}}
\begin{document}
\begin{frame}
\frametitle{There Is No Largest Prime Number - 20pt}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number.
\end{theorem}
\begin{proof}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime number not in the first $p$ numbers.\qedhere
\end{enumerate}
\end{proof}
\end{frame}
\end{document}
和予以适当修改:
额外使用\setmathfont[range=...
还可以获得无衬线数学字母。