我的文档怎么了?横向时留有空白

我的文档怎么了?横向时留有空白

我与大家分享我家庭作业的一个练习的代码。我需要一个横向部分,因为页面上没有足够的空间容纳我写的单词。但是当我使用环境时,landscape从左到右的空间太大了。以下是这种情况的图片:

错误图示

所以这已经是错误的了。你能帮我找出我的错误吗?

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%PREAMBLE%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[12pt, letterpaper]{article}
%%%%%%%%%%%%%%%%%%%%%%%%PAQUETES%%%%%%%%%%%%%%%%%%%%%%%%%%

%Avoid problems with accents and special charracters
\usepackage[utf8]{inputenc}
%document Format
\usepackage[left=2.5cm,top=2.5cm,right=2.5cm,bottom=2.5cm]{geometry}
%Colors along the docuemnt.
\usepackage{xcolor}
%Format for mathematical assertions
\usepackage{amsthm}
%More useful symbols
\usepackage{mathtools}
%Even more useful symbols
\usepackage{amssymb}
%Language of Expresions
\usepackage[english]{babel}
%Format Sections
\usepackage{sectsty}
%Font for canonical sets
\usepackage{dsfont}
%Images inclusion
\usepackage{graphicx}
%Long comments
\usepackage{comment}
%Caritas
\usepackage{wasysym}
%Referencias
\usepackage{hyperref}
%Enumeración con Color
\usepackage{enumitem}
%Hoja Volteada
\usepackage{pdflscape}
%%%%%%%%%%%%%%%%%%%%%%%%%COLORS%%%%%%%%%%%%%%%%%%%%%%%%%%%

\definecolor{blue}{RGB}{0,176,246}
\definecolor{white}{RGB}{255,255,255}

%%%%%%%%%%%%%%%%%%%%%ENTORNOS%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Exercise Enviroment
\renewcommand{\thesection}{\Roman{section}}
\newcounter{exercise}
\renewcommand{\theexercise}{\arabic{exercise}}
\newenvironment{exercise}[1][]{\refstepcounter{exercise}
    \par\medskip
    \noindent \textcolor{blue}{\textbf{Exercise~\theexercise}. #1}} \rmfamily
    {\medskip}
    
%Proofs
\renewenvironment{proof}{{\noindent\bfseries Proof:\\}}{\rightline{$\blacksquare$}}

%Mathematical Staments
\theoremstyle{definition}
\newtheorem{Theo}{Theorem}
\newtheorem{Lem}[Theo]{Lemma}
\newtheorem{Def}[Theo]{Definition}
\newtheorem{Not}[Theo]{Notation}
\newtheorem{Cor}{Corollary}[Theo]
\newtheorem{Propo}[Theo]{Proposition}
\newtheorem{Prope}[Theo]{Property}
\newtheorem{Obs}[Theo]{Observation}
    

%%%%%%%%%%%%%%%%%%%%%MY COMMANDS%%%%%%%%%%%%%%%%%%%%%%%%%

%New
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}

%Renewed

\renewcommand{\sup}{\operatorname{Sup}}
\renewcommand{\inf}{\operatorname{Inf}}
\renewcommand{\limsup}{\operatorname{LimSup}}
\renewcommand{\liminf}{\operatorname{LimInf}}
\renewcommand{\min}{\operatorname{Min}}
\renewcommand{\max}{\operatorname{Max}}

%%%%%%%%%%%%%%%%%%%ESTYLE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsectionfont{\color{blue}}
\sectionfont{\color{blue}}

%Hyperlinks
\hypersetup{
    colorlinks=true,
    linkcolor=red,
    filecolor=magenta,      
    urlcolor=red
}

\urlstyle{same}

%%%%%%%%%%%%%%%%%%%%%%%&TÍTULO&%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{\textcolor{blue}{\textbf{Homework \#5\\
Analysis I (English)}}}
\author{\textcolor{blue}{\textit{Germán Felipe López Díaz}}}
\date{\textit{\textcolor{blue}{March 9\textsuperscript{th}, 2021}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%DOCUMENTO%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}

\maketitle

\setcounter{exercise}{5}

\begin{exercise}
    
    \textcolor{blue}{The Fibonacci sequence $(a_{n})_{n \in \N}$ is defined recursively by:
    \[a_{0} = 1 \hspace{0.5cm} a_{1} = 1 \hspace{0.5cm} a_{n+1} = a_{n} + a_{n-1}\hspace{0.5cm}n \in \N\]
    Moreover, let $\sigma < \tau$ the solutions of $x^{2} - x - 1 = 0$ and
    \[x_{n} = \frac{a_{n+1}}{a_{n}}, n \in \N\]}
    
    For its exercise we need some lemmas:
    
    \begin{Lem}
        \label{L1}
        For any $n \in \N_{0}$. In Fibonacci sequence context, $a_{n} > 0$.
    \end{Lem}
    
    \begin{proof}
        
        \textbf{Bases Cases:}
        \begin{itemize}
            \item[$\star$] $\mathit{n = 0}:$ Suppose by contradiction that not. That is that $a_{0} \leq 0$. By definition $a_{0} = 1$. Therefore:
            \[1 \leq 0\]
            A contradiction! with the order of natural numbers. In conclusion it must be true that $a_{0} > 0$.
            \item[$\star$] $\mathit{n = 1}:$ Suppose by contradiction that not. That is that $a_{1} \leq 0$. By definition $a_{1} = 1$. Therefore:
            \[1 \leq 0\]
            A contradiction! with the order of natural numbers. In conclusion it must be true that $a_{1} > 0$.
        \end{itemize}
        \textbf{Inductive Step:}
        
        Suppose the result for any $k \in \N$ with $k \leq n$. It is that:
        \[\forall_{k \in \N}\left[(k \leq n) \rightarrow (a_{k} > 0)\right]\hspace{2cm}\textbf{(HI)}\]
        We want to verify the result for $n+1$. By the recursive definition we have that:
        \[a_{n+1} = a_{n} + a_{n-1}\]
        By \textbf{(HI)} we have that the right side is a non negative number due to $n \leq n$ and $n-1 \leq 1$ and the addition of to non negative numbers is again a non negative number. Call it $P$:
        \[a_{n+1} = P\]
        By the Strong Induction Principle we have that the result is true for all $n \in \N_{0}$.
    \end{proof}
    
    \begin{Lem}
        \label{L2}
        Let $\sigma$ and $\tau$, $\sigma < \tau$, solutions for the equation $x^{2} - x - 1 = 0$. Then:
        \begin{itemize}
            \item[(i)] $\tau - \sigma = \sqrt{5}$ 
            \item[(ii)] $\tau^{2} - \sigma^{2} = \tau - \sigma$ 
            \item[(iii)] $\tau^{-1} + \tau^{-2} = 1 = \sigma^{-1}+ \sigma^{-2}$
        \end{itemize}
        \begin{proof}
            Initially by definition of $\sigma$ and $\tau$ we have the following equality:
            \begin{equation}
                \label{Eq1.1}
                \tau^{2} - \tau - 1 = 0
            \end{equation}
            \begin{equation}
                \label{Eq1.2}
                \sigma^{2} - \sigma - 1 = 0
            \end{equation}
            On the other hand, remember The Quadratic Formula:
            \[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\]
            We use it to solve the polynomial $x^{2} - x - 1$ using the with $a = 1$, $b = -1$ and $c = -1$:
            \[x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4(1)(-1)}}{2(1)}\]
            \[x = \frac{1 \pm \sqrt{1 + 4}}{2}\]
            \[x = \frac{1 \pm \sqrt{5}}{2}\]
            According to Precalculus course we have that its polynomial has two roots:
            \[x_{1} = \frac{1 - \sqrt{5}}{2}\hspace{1cm}x_{2} =\frac{1 + \sqrt{5}}{2}\]
            Both of them are real! Since $\sigma$ and $\tau$ are roots of it, necesarily, we must have that:
            \begin{equation}
                \label{Eq1.3}
                \sigma = \frac{1 - \sqrt{5}}{2}
            \end{equation}
            \begin{equation}
                \label{Eq1.4}
                \tau = \frac{1 + \sqrt{5}}{2}
            \end{equation}
            Because $\sigma < \tau$
            \begin{itemize}
                \item[(i)] 
                \[\begin{array}{rclr}
                    \tau  - \sigma & = & \frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} & \left(\text{Equation \textcolor{red}{(\ref{Eq1.3})} and \textcolor{red}{(\ref{Eq1.4})}}\right)\\
                    & = & \frac{1 + \sqrt{5} -1 + \sqrt{5}}{2}& \left(\text{Subtraction of homogeneous fractions}\right)\\
                    & = & \frac{2\sqrt{5}}{2}& \left(\text{Adding similar terms}\right)\\
                    & = & \sqrt{5} & \left(\text{Canceling}\right)\\
                \end{array}\]
                \item[(ii)] Using equation $\textcolor{red}{(\ref{Eq1.1})}$ and $\textcolor{red}{(\ref{Eq1.2})}$ finding the quadratic term we get that:
                \[\tau^{2} = \tau + 1 \hspace{1cm}\sigma^{2} = \sigma + 1\]
                Thus we get:
                \[\begin{array}{rclr}
                    \tau^{2} - \sigma^{2} & = & \tau + 1 - (\sigma + 1) &\left(\text{Substraction of last equations}\right)\\
                    & = & \tau + 1 - \sigma - 1 & \left(\text{Distributing the minus}\right)\\
                    & = & \tau - \sigma & \left(\text{Adding similar terms}\right)\\ 
                \end{array}\] 
                
                \item[(iii)] Let $s$ be solution of the equation $x^{2} - x - 1 = 0$. from the solution of the Quadratic Formula, that we did at the beginning, we have that $s = \frac{1 \pm \sqrt{5}}{2}$. There fore we have the following equality:
                \[s^{-1} = \frac{2}{1 \pm \sqrt{5}} \hspace{2cm} s^{-2} = \frac{4}{(1 \pm \sqrt{5})^{2}}\]
                Let´s see what is $s^{-1} + s^{-2}$:
                \[s^{-1} + s^{-2} = \frac{2}{1 \pm \sqrt{5}} + \frac{2}{1 \pm \sqrt{5}}\]
                A common denominator is $(1 \pm \sqrt{5})^{2}$. Thus we have that:
                \[s^{-1} + s^{-2} = \frac{2 \pm 2\sqrt{5} + 4}{(1 \pm \sqrt{5})^{2}}\]
                We can rewrite the expression as:
                \[s^{-1} + s^{-2} = \frac{1 \pm 2\sqrt{5} + 5}{(1 \pm \sqrt{5})^{2}}\]
                Notice the numerator is the same denominator but solved:
                \[s^{-1} + s^{-2} = \frac{(1 \pm \sqrt{5})^{2}}{(1 \pm \sqrt{5})^{2}}\]
                So canceling we get:
                \[s^{-1} + s^{-2} = 1\]
                Since it is true for any solution of the equation we have what we wanted:
                \[\tau^{-1} + \tau^{-2} = 1 =\sigma^{-1} + \sigma^{-2}\] 
            \end{itemize}
        \end{proof}
    \end{Lem}
    \begin{Lem}
        \label{L3}
        Let $p \in \R$. Define $a_{n} = p^{n}$. If $|p| < 1$ then, the sequence $(a_{n})_{n \in \N}\subseteq\R$ converges to zero.
        
        \begin{proof}
            
            It is enough to verify that the sequence is bounded above and is monotonic decreasing:
            
            
            \textbf{The sequence is bounded above by $\boldsymbol{0}$: }We want to see that for any $n \in \N_{0}$ $, 0 \leq a_{n}$. Proceed by induction over $n \in \N_{0}$:
            
            \textit{Base Case: $\mathit{n = 1}$}
            
            Notice that $a_{0} = p^0 = 1$ and it clearly satisfies that:
            \[0 \leq 1\]
            So we have that $0 \leq a_{n}$
            
            \textit{Inductive Step:}
            
            Suppose the result for $n = k$. It is that:
            \[0 \leq a_{k}\hspace{2cm}\textbf{(HI)}\]
            We want to verify the inequality for $n = k+1$ (i.e. $0 \leq a_{k+1}$)
            \[\begin{array}{rclr}
                a_{k+1} & = & p^{k+1} & \left(\text{$a_{k+1}$ definition}\right)\\
                & = & pp^{k} & \left(\text{Powers Properties}\right)\\
                & = & pa_{k} & \left(\text{$a_{k}$ definition}\right)\\
                & \geq & p0 &  \left(\textbf{(HI)}\right)\\
                & \geq & 0 & \left(\text{$0$ definition}\right)
            \end{array}\]
            So by the induction principle we have the result for any $n \in \N_{0}$. Thus $(a_{n})_{n \in \N}$ is bounded above by $0$.
            
            \textbf{$\boldsymbol{{a_{n})_{n \in \N}}}$ is monotonically decreasing:} We want to verify that $a_{n+1} \leq a_{n}$. We proceed by induction over $n$:
            
            \textbf{Base Case:}\textit{$n = 0$}
            Notice that $a_{0 +1} = a_{1} = p$ and $a_{0} = p^{0} = 1$. Since $|p| < 1$, $-1 < p < 1$. Thus, in particular, we get that:
            \[p \leq 1\]
            Therefore $a_{1} \leq a_{0}$

            \textbf{Inductive Step:}
            
            Suppose the result for $n = k$. It is that:
            \[a_{k+1} \leq a_{k}\hspace{2cm}\textbf{(HI)}\]
            We want to verify the inequality for $n = k+1$ (i.e. $a_{k+2} \leq a_{k+1}$)
            We have to cases: 
            \begin{enumerate}[label=(\alph*)]
                \item $0 \leq p < 1$
                \[\begin{array}{rclr}
                a_{k+1} & \leq & a_{k} & \left(\textbf{(HI)}\right)\\
                pa_{k+1} & \leq & pa_{k} & \left(\text{$p \geq 0$}\right)\\
                pp^{k+1}& \leq & pp^{k} & \left(\text{$a_{k+1}$ and $a_{k}$ definition}\right)\\
                p^{k+2}& \leq & p^{k+1} &  \left(\text{Power properties}\right)\\
                a_{k+2}& \leq & a_{k+1} & \left(\text{$a_{k+2}$ and $a_{k+1}$ definition}\right)
            \end{array}\]
            As we wanted!
            
            \item $1 < p < 0$ 
            \[\begin{array}{rclr}
                a_{k+2} &  = & p^{k+2} & \left(\text{$a_{k+2}$ definition}\right)\\
                & = & pp^{k+1} & \left(\text{Power properties}\right)\\
                & \leq & p^{k+1} & \left(\text{$p < 0$}\right)\\
                & \leq & a_{k+1} &  \left(\text{$a_{k+1}$ definition}\right)
            \end{array}\]
            \end{enumerate}
            
            So by the induction principle we have the result for any $n \in \N_{0}$. Thus $a_{n +1} \leq a_{n}$.
 
        \end{proof}
    \end{Lem}
    
    \begin{Lem}
        \label{L4}
        Let $k \in \N$ and we define $x_{n} = \frac{1}{n^{k}}$ for $n \in \N$. Then $(x_{n})_{n \in \N}$ converges to zero. 
        \begin{proof}
            See Homework 4 Lemma 4.
        \end{proof}
    \end{Lem}
    
    \begin{enumerate}[label=\textcolor{blue}{(\alph*)}]
        \item \textcolor{blue}{Show that $(a_{n})_{n \in \N}$ does not converge in $\R$.}
        
        Suppose by contradiction that it does. So we have that for any $n \in \N$ $\displaystyle{\lim_{n \to \infty}}{a_{n}} = r$ for some $r \in \R$. Using recursive definition  of the sequence we get that:
        \[a_{n+1} =  a_{n} + a_{n-1}\]
        Passing by the limit:
        \[\lim_{n \to \infty}{a_{n+1}} = \lim_{n \to \infty}{a_{n} a_{n-1}}\]
        \[\lim_{n \to \infty}{a_{n+1}} = \lim_{n \to \infty}{a_{n}} + \lim_{n \to \infty}{a_{n-1}}\]
        Using our hypothesis: 
        \[r = r + r\]
        \[r = 2r\]
        Therefore, divide both sides by $r$. It is fair because of the lemma \textcolor{red}{\ref{L1}}:
        \[1 = 2\]
        A contradiction! It is a false statement. Thus we must have that $(a_{n})_{n \in \N}$ does not converge in $\R$.
        
        \item \textcolor{blue}{$a_{n} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1}), n \in \N$.}
        
        We are going to demonstrate it by Strong Induction o over $n \in \N_{0}$:
        \textbf{Bases Cases:}
            \begin{itemize}
                \item[\textasteriskcentered] $\mathit{n = 0}:$ Let $R = \frac{1}{\sqrt{5}}(\tau^{0+1} - \sigma^{0+1})$. Recall that by definition we have that $a_{0} = 1$, so it is enough to verify that $R = 1$: 
                \[R = \frac{1}{\sqrt{5}}(\tau - \sigma)\]
                Using the lemma \textcolor{red}{\ref{L2}.(i)} we get that:
                \[R = \frac{1}{\sqrt{5}}\sqrt{5}\]
                Canceling:
                \[R = 1\]
                \item[\textasteriskcentered] $\mathit{n = 1}:$ Let $R = \frac{1}{\sqrt{5}}(\tau^{1+1} - \sigma^{1+1})$. Recall that by definition we have that $a_{1} = 1$, so it is enough to verify that $R = 1$: 
                \[R = \frac{1}{\sqrt{5}}(\tau^{2} - \sigma^{2})\]
                Using the lemma \textcolor{red}{\ref{L2}.(ii)} we get that:
                \[R = \frac{1}{\sqrt{5}}(\tau - \sigma)\]
                Using the lemma \textcolor{red}{\ref{L2}.(i)} we get that:
                \[R = \frac{1}{\sqrt{5}}\sqrt{5}\]
                Canceling:
                \[R = 1\]
            \end{itemize}
        \textbf{Inductive Step:}
        Suppose the result for $k \in \N$ with $k \leq n$. It is that:
        \[\textbf{(HI)} \hspace{2cm} \forall_{k \in \N_{0}}{\left\{\left(k \leq n\right) \rightarrow \left[a_{k} = \frac{1}{\sqrt{5}}(\tau^{k+1} - \sigma^{k+1})\right]\right\}}\]
        We prove it for $n+1$. It is that:
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+2} - \sigma^{n+2})\]
        By the recursive definition of Fibonacci Sequence:
        \[a_{n+1} = a_{n} + a_{n-1}\]
        By \textbf{(HI)} to $n-1$ and $n$ (they are less or equal to $n$):
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1}) + \frac{1}{\sqrt{5}}(\tau^{n-1+1} - \sigma^{n-1+1})\]
        Use Common Factor factorization with $\frac{1}{\sqrt{5}}$:
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1} + \tau^{n} - \sigma^{n})\]
        Use Common Factor factorization with $\tau^{n+2}$ and $\sigma^{n+2}$:
        \[a_{n+1} = \frac{1}{\sqrt{5}}[\tau^{n+2}(\tau^{-1} + \tau^{-2}) - \sigma^{n+2}( \sigma^{-1} + \sigma^{-2})]\]
        Using the lemma \textcolor{red}{\ref{L2}.(iii)} we can change the parenthesis:
        \[a_{n+1} = \frac{1}{\sqrt{5}}[\tau^{n+2}(1) - \sigma^{n+2}(1)]\]
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+2} - \sigma^{n+2})\]
        So by the Strong Induction Principle we have that for any $n \in \N_{0}$:
        \[a_{n} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1})\]
        \begin{landscape}
        \item[\textcolor{blue}{(c) }]\textcolor{blue}{$\displaystyle{\lim_{n \to \infty}x_{n} = \tau}$.}
        
        \[\begin{array}{rclr}
            \displaystyle{\lim_{n \to \infty}{x_{n}}} & = & \displaystyle{\lim_{n \to \infty}{\frac{a_{n+1}}{a_{n}}}} & \left(\text{$x_{n}$ definition}\right)  \\
            &&&\\
            & = & \displaystyle{\lim_{n \to \infty}{\frac{\frac{1}{\sqrt{5}}(\tau^{n+2} - \sigma^{n+2})}{\frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1})}}} & \left(\text{Exercise $(b)$ formula}\right)\\
            &&&\\
            & = & \displaystyle{\lim_{n \to \infty}{\cfrac{\frac{\tau^{n+2}}{\tau^{n+2}} - \frac{\sigma^{n+2}}{\tau^{n+2}}}{\frac{\tau^{n+1}}{\tau^{n+1}}\frac{1}{\tau} - \frac{\sigma^{n+1}}{\tau^{n+1}}\frac{1}{\tau}}}} & \left(\text{Canceling and dividing by $\tau^{n+2}$ up and down}\right)\\
            &&&\\
            & = & \displaystyle{\lim_{n \to \infty}{\frac{1 - \left(\frac{\sigma}{\tau}\right)^{n+2}}{\frac{1}{\tau} - \frac{1}{\tau}\left(\frac{\sigma}{\tau}\right)^{n+1}}}} & \left(\text{Power properties}\right)\\
            &&&\\
            & = & \displaystyle{\lim_{n \to \infty}{\frac{1 - \left(\frac{\sigma}{\tau}\right)^{n+2}}{\frac{1}{\tau}\left[ 1 - \left(\frac{\sigma}{\tau}\right)^{n+1}\right]}}} & \left(\text{Common Factor Factorization}\right)\\
            &&&\\
            & = & \displaystyle{\lim_{n \to \infty}{\frac{1 - \left(\frac{\sigma}{\tau}\right)^{n}\left(\frac{\sigma}{\tau}\right)^{2}}{\frac{1}{\tau}\left[ 1 - \left(\frac{\sigma}{\tau}\right)^{n}\left(\frac{\sigma}{\tau}\right)\right]}}} & \left(\text{Power properties}\right)\\
            &&&\\
            & = & \frac{ \displaystyle{\lim_{n \to \infty}{1} - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}\lim_{n \to \infty}\left(\frac{\sigma}{\tau}\right)^{2}}}}{\displaystyle{\lim_{n \to \infty}{\left(\frac{1}{\tau}\right)}\left[ \lim_{n \to \infty}{1} - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}\lim_{n \to \infty}\left(\frac{\sigma}{\tau}\right)}\right]}} & \left(\text{Limit properties}\right)\\
            &&&\\
            & = & \frac{\displaystyle{1 - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}\left(\frac{\sigma}{\tau}\right)^{2}}}}{\displaystyle{\left(\frac{1}{\tau}\right)\left[1 - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}}\left(\frac{\sigma}{\tau}\right)\right]}} & \left(\text{Solving constant limits}\right)\\
            &&&\\
            & = & \frac{\displaystyle{1 - 0\left(\frac{\sigma}{\tau}\right)^{2}}}{\displaystyle{\left(\frac{1}{\tau}\right)\left[1 - 0\left(\frac{\sigma}{\tau}\right)\right]}} & \left(\text{Using lemmas \textcolor{red}{\ref{L2}.(iv)} and \ref{L3}}\right)\\
            &&&\\
        \end{array}\]
        \[\begin{array}{rclr}
            \displaystyle{\lim_{n \infty}{x_{n}}} & = & \displaystyle{\frac{\frac{1}{1}}{\frac{1}{\tau}}} & \left(\text{0 definition}\right)\\
            &&&\\
            & = & \tau & \left(\text{Means and extremes law}\right)\\
            &&&
        \end{array}\]
        As we wanted!
        \end{landscape}
        
    \end{enumerate}
\end{exercise}

答案1

A

到这里

b

可以使用包来完成nicematrix

\Block提供可作为和的命令multicolumn,并且还允许在单元格内部multirow使用 。\\

最简单的用法\Block{}{<content1> \\ <content2>}是创建一个带有两条独立线的 1x1 单元格。

最后一个数组代码中更改的五行被标记为 %<<<< changed

这是完整的代码。

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%PREAMBLE%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[12pt, letterpaper]{article}
%%%%%%%%%%%%%%%%%%%%%%%%PAQUETES%%%%%%%%%%%%%%%%%%%%%%%%%%

%Avoid problems with accents and special charracters
\usepackage[utf8]{inputenc}
%document Format
\usepackage[left=2.5cm,top=2.5cm,right=2.5cm,bottom=2.5cm]{geometry}
%Colors along the docuemnt.
\usepackage{xcolor}
%Format for mathematical assertions
\usepackage{amsthm}
%More useful symbols
\usepackage{mathtools}
%Even more useful symbols
\usepackage{amssymb}
%Language of Expresions
\usepackage[english]{babel}
%Format Sections
\usepackage{sectsty}
%Font for canonical sets
\usepackage{dsfont}
%Images inclusion
\usepackage{graphicx}
%Long comments
\usepackage{comment}
%Caritas
\usepackage{wasysym}
%Referencias
\usepackage{hyperref}
%Enumeración con Color
\usepackage{enumitem}
%Hoja Volteada
\usepackage{pdflscape}

\usepackage{nicematrix} % <<<<<<<<<<<<<< added
%%%%%%%%%%%%%%%%%%%%%%%%%COLORS%%%%%%%%%%%%%%%%%%%%%%%%%%%

\definecolor{blue}{RGB}{0,176,246}
\definecolor{white}{RGB}{255,255,255}

%%%%%%%%%%%%%%%%%%%%%ENTORNOS%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Exercise Enviroment
\renewcommand{\thesection}{\Roman{section}}
\newcounter{exercise}
\renewcommand{\theexercise}{\arabic{exercise}}
\newenvironment{exercise}[1][]{\refstepcounter{exercise}
    \par\medskip
    \noindent \textcolor{blue}{\textbf{Exercise~\theexercise}. #1}} \rmfamily
    {\medskip}
    
%Proofs
\renewenvironment{proof}{{\noindent\bfseries Proof:\\}}{\rightline{$\blacksquare$}}

%Mathematical Staments
\theoremstyle{definition}
\newtheorem{Theo}{Theorem}
\newtheorem{Lem}[Theo]{Lemma}
\newtheorem{Def}[Theo]{Definition}
\newtheorem{Not}[Theo]{Notation}
\newtheorem{Cor}{Corollary}[Theo]
\newtheorem{Propo}[Theo]{Proposition}
\newtheorem{Prope}[Theo]{Property}
\newtheorem{Obs}[Theo]{Observation}
    

%%%%%%%%%%%%%%%%%%%%%MY COMMANDS%%%%%%%%%%%%%%%%%%%%%%%%%

%New
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\C}{\mathbb{C}}

%Renewed

\renewcommand{\sup}{\operatorname{Sup}}
\renewcommand{\inf}{\operatorname{Inf}}
\renewcommand{\limsup}{\operatorname{LimSup}}
\renewcommand{\liminf}{\operatorname{LimInf}}
\renewcommand{\min}{\operatorname{Min}}
\renewcommand{\max}{\operatorname{Max}}

%%%%%%%%%%%%%%%%%%%ESTYLE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\subsectionfont{\color{blue}}
\sectionfont{\color{blue}}

%Hyperlinks
\hypersetup{
    colorlinks=true,
    linkcolor=red,
    filecolor=magenta,      
    urlcolor=red
}

\urlstyle{same}

%%%%%%%%%%%%%%%%%%%%%%%&TÍTULO&%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{\textcolor{blue}{\textbf{Homework \#5\\
Analysis I (English)}}}
\author{\textcolor{blue}{\textit{Germán Felipe López Díaz}}}
\date{\textit{\textcolor{blue}{March 9\textsuperscript{th}, 2021}}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%DOCUMENTO%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}

\maketitle

\setcounter{exercise}{5}

\begin{exercise}
    
    \textcolor{blue}{The Fibonacci sequence $(a_{n})_{n \in \N}$ is defined recursively by:
    \[a_{0} = 1 \hspace{0.5cm} a_{1} = 1 \hspace{0.5cm} a_{n+1} = a_{n} + a_{n-1}\hspace{0.5cm}n \in \N\]
    Moreover, let $\sigma < \tau$ the solutions of $x^{2} - x - 1 = 0$ and
    \[x_{n} = \frac{a_{n+1}}{a_{n}}, n \in \N\]}
    
    For its exercise we need some lemmas:
    
    \begin{Lem}
        \label{L1}
        For any $n \in \N_{0}$. In Fibonacci sequence context, $a_{n} > 0$.
    \end{Lem}
    
    \begin{proof}
        
        \textbf{Bases Cases:}
        \begin{itemize}
            \item[$\star$] $\mathit{n = 0}:$ Suppose by contradiction that not. That is that $a_{0} \leq 0$. By definition $a_{0} = 1$. Therefore:
            \[1 \leq 0\]
            A contradiction! with the order of natural numbers. In conclusion it must be true that $a_{0} > 0$.
            \item[$\star$] $\mathit{n = 1}:$ Suppose by contradiction that not. That is that $a_{1} \leq 0$. By definition $a_{1} = 1$. Therefore:
            \[1 \leq 0\]
            A contradiction! with the order of natural numbers. In conclusion it must be true that $a_{1} > 0$.
        \end{itemize}
        \textbf{Inductive Step:}
        
        Suppose the result for any $k \in \N$ with $k \leq n$. It is that:
        \[\forall_{k \in \N}\left[(k \leq n) \rightarrow (a_{k} > 0)\right]\hspace{2cm}\textbf{(HI)}\]
        We want to verify the result for $n+1$. By the recursive definition we have that:
        \[a_{n+1} = a_{n} + a_{n-1}\]
        By \textbf{(HI)} we have that the right side is a non negative number due to $n \leq n$ and $n-1 \leq 1$ and the addition of to non negative numbers is again a non negative number. Call it $P$:
        \[a_{n+1} = P\]
        By the Strong Induction Principle we have that the result is true for all $n \in \N_{0}$.
    \end{proof}
    
    \begin{Lem}
        \label{L2}
        Let $\sigma$ and $\tau$, $\sigma < \tau$, solutions for the equation $x^{2} - x - 1 = 0$. Then:
        \begin{itemize}
            \item[(i)] $\tau - \sigma = \sqrt{5}$ 
            \item[(ii)] $\tau^{2} - \sigma^{2} = \tau - \sigma$ 
            \item[(iii)] $\tau^{-1} + \tau^{-2} = 1 = \sigma^{-1}+ \sigma^{-2}$
        \end{itemize}
        \begin{proof}
            Initially by definition of $\sigma$ and $\tau$ we have the following equality:
            \begin{equation}
                \label{Eq1.1}
                \tau^{2} - \tau - 1 = 0
            \end{equation}
            \begin{equation}
                \label{Eq1.2}
                \sigma^{2} - \sigma - 1 = 0
            \end{equation}
            On the other hand, remember The Quadratic Formula:
            \[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\]
            We use it to solve the polynomial $x^{2} - x - 1$ using the with $a = 1$, $b = -1$ and $c = -1$:
            \[x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4(1)(-1)}}{2(1)}\]
            \[x = \frac{1 \pm \sqrt{1 + 4}}{2}\]
            \[x = \frac{1 \pm \sqrt{5}}{2}\]
            According to Precalculus course we have that its polynomial has two roots:
            \[x_{1} = \frac{1 - \sqrt{5}}{2}\hspace{1cm}x_{2} =\frac{1 + \sqrt{5}}{2}\]
            Both of them are real! Since $\sigma$ and $\tau$ are roots of it, necesarily, we must have that:
            \begin{equation}
                \label{Eq1.3}
                \sigma = \frac{1 - \sqrt{5}}{2}
            \end{equation}
            \begin{equation}
                \label{Eq1.4}
                \tau = \frac{1 + \sqrt{5}}{2}
            \end{equation}
            Because $\sigma < \tau$
            \begin{itemize}
                \item[(i)] 
                \[\begin{array}{rclr}
                    \tau  - \sigma & = & \frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} & \left(\text{Equation \textcolor{red}{(\ref{Eq1.3})} and \textcolor{red}{(\ref{Eq1.4})}}\right)\\
                    & = & \frac{1 + \sqrt{5} -1 + \sqrt{5}}{2}& \left(\text{Subtraction of homogeneous fractions}\right)\\
                    & = & \frac{2\sqrt{5}}{2}& \left(\text{Adding similar terms}\right)\\
                    & = & \sqrt{5} & \left(\text{Canceling}\right)\\
                \end{array}\]
                \item[(ii)] Using equation $\textcolor{red}{(\ref{Eq1.1})}$ and $\textcolor{red}{(\ref{Eq1.2})}$ finding the quadratic term we get that:
                \[\tau^{2} = \tau + 1 \hspace{1cm}\sigma^{2} = \sigma + 1\]
                Thus we get:
                \[\begin{array}{rclr}
                    \tau^{2} - \sigma^{2} & = & \tau + 1 - (\sigma + 1) &\left(\text{Substraction of last equations}\right)\\
                    & = & \tau + 1 - \sigma - 1 & \left(\text{Distributing the minus}\right)\\
                    & = & \tau - \sigma & \left(\text{Adding similar terms}\right)\\ 
                \end{array}\] 
                
                \item[(iii)] Let $s$ be solution of the equation $x^{2} - x - 1 = 0$. from the solution of the Quadratic Formula, that we did at the beginning, we have that $s = \frac{1 \pm \sqrt{5}}{2}$. There fore we have the following equality:
                \[s^{-1} = \frac{2}{1 \pm \sqrt{5}} \hspace{2cm} s^{-2} = \frac{4}{(1 \pm \sqrt{5})^{2}}\]
                Let´s see what is $s^{-1} + s^{-2}$:
                \[s^{-1} + s^{-2} = \frac{2}{1 \pm \sqrt{5}} + \frac{2}{1 \pm \sqrt{5}}\]
                A common denominator is $(1 \pm \sqrt{5})^{2}$. Thus we have that:
                \[s^{-1} + s^{-2} = \frac{2 \pm 2\sqrt{5} + 4}{(1 \pm \sqrt{5})^{2}}\]
                We can rewrite the expression as:
                \[s^{-1} + s^{-2} = \frac{1 \pm 2\sqrt{5} + 5}{(1 \pm \sqrt{5})^{2}}\]
                Notice the numerator is the same denominator but solved:
                \[s^{-1} + s^{-2} = \frac{(1 \pm \sqrt{5})^{2}}{(1 \pm \sqrt{5})^{2}}\]
                So canceling we get:
                \[s^{-1} + s^{-2} = 1\]
                Since it is true for any solution of the equation we have what we wanted:
                \[\tau^{-1} + \tau^{-2} = 1 =\sigma^{-1} + \sigma^{-2}\] 
            \end{itemize}
        \end{proof}
    \end{Lem}
    \begin{Lem}
        \label{L3}
        Let $p \in \R$. Define $a_{n} = p^{n}$. If $|p| < 1$ then, the sequence $(a_{n})_{n \in \N}\subseteq\R$ converges to zero.
        
        \begin{proof}
            
            It is enough to verify that the sequence is bounded above and is monotonic decreasing:
            
            
            \textbf{The sequence is bounded above by $\boldsymbol{0}$: }We want to see that for any $n \in \N_{0}$ $, 0 \leq a_{n}$. Proceed by induction over $n \in \N_{0}$:
            
            \textit{Base Case: $\mathit{n = 1}$}
            
            Notice that $a_{0} = p^0 = 1$ and it clearly satisfies that:
            \[0 \leq 1\]
            So we have that $0 \leq a_{n}$
            
            \textit{Inductive Step:}
            
            Suppose the result for $n = k$. It is that:
            \[0 \leq a_{k}\hspace{2cm}\textbf{(HI)}\]
            We want to verify the inequality for $n = k+1$ (i.e. $0 \leq a_{k+1}$)
            \[\begin{array}{rclr}
                a_{k+1} & = & p^{k+1} & \left(\text{$a_{k+1}$ definition}\right)\\
                & = & pp^{k} & \left(\text{Powers Properties}\right)\\
                & = & pa_{k} & \left(\text{$a_{k}$ definition}\right)\\
                & \geq & p0 &  \left(\textbf{(HI)}\right)\\
                & \geq & 0 & \left(\text{$0$ definition}\right)
            \end{array}\]
            So by the induction principle we have the result for any $n \in \N_{0}$. Thus $(a_{n})_{n \in \N}$ is bounded above by $0$.
            
            \textbf{$\boldsymbol{{a_{n})_{n \in \N}}}$ is monotonically decreasing:} We want to verify that $a_{n+1} \leq a_{n}$. We proceed by induction over $n$:
            
            \textbf{Base Case:}\textit{$n = 0$}
            Notice that $a_{0 +1} = a_{1} = p$ and $a_{0} = p^{0} = 1$. Since $|p| < 1$, $-1 < p < 1$. Thus, in particular, we get that:
            \[p \leq 1\]
            Therefore $a_{1} \leq a_{0}$

            \textbf{Inductive Step:}
            
            Suppose the result for $n = k$. It is that:
            \[a_{k+1} \leq a_{k}\hspace{2cm}\textbf{(HI)}\]
            We want to verify the inequality for $n = k+1$ (i.e. $a_{k+2} \leq a_{k+1}$)
            We have to cases: 
            \begin{enumerate}[label=(\alph*)]
                \item $0 \leq p < 1$
                \[\begin{array}{rclr}
                a_{k+1} & \leq & a_{k} & \left(\textbf{(HI)}\right)\\
                pa_{k+1} & \leq & pa_{k} & \left(\text{$p \geq 0$}\right)\\
                pp^{k+1}& \leq & pp^{k} & \left(\text{$a_{k+1}$ and $a_{k}$ definition}\right)\\
                p^{k+2}& \leq & p^{k+1} &  \left(\text{Power properties}\right)\\
                a_{k+2}& \leq & a_{k+1} & \left(\text{$a_{k+2}$ and $a_{k+1}$ definition}\right)
            \end{array}\]
            As we wanted!
            
            \item $1 < p < 0$ 
            \[\begin{array}{rclr}
                a_{k+2} &  = & p^{k+2} & \left(\text{$a_{k+2}$ definition}\right)\\
                & = & pp^{k+1} & \left(\text{Power properties}\right)\\
                & \leq & p^{k+1} & \left(\text{$p < 0$}\right)\\
                & \leq & a_{k+1} &  \left(\text{$a_{k+1}$ definition}\right)
            \end{array}\]
            \end{enumerate}
            
            So by the induction principle we have the result for any $n \in \N_{0}$. Thus $a_{n +1} \leq a_{n}$.
 
        \end{proof}
    \end{Lem}
    
    \begin{Lem}
        \label{L4}
        Let $k \in \N$ and we define $x_{n} = \frac{1}{n^{k}}$ for $n \in \N$. Then $(x_{n})_{n \in \N}$ converges to zero. 
        \begin{proof}
            See Homework 4 Lemma 4.
        \end{proof}
    \end{Lem}
    
    \begin{enumerate}[label=\textcolor{blue}{(\alph*)}]
        \item \textcolor{blue}{Show that $(a_{n})_{n \in \N}$ does not converge in $\R$.}
        
        Suppose by contradiction that it does. So we have that for any $n \in \N$ $\displaystyle{\lim_{n \to \infty}}{a_{n}} = r$ for some $r \in \R$. Using recursive definition  of the sequence we get that:
        \[a_{n+1} =  a_{n} + a_{n-1}\]
        Passing by the limit:
        \[\lim_{n \to \infty}{a_{n+1}} = \lim_{n \to \infty}{a_{n} a_{n-1}}\]
        \[\lim_{n \to \infty}{a_{n+1}} = \lim_{n \to \infty}{a_{n}} + \lim_{n \to \infty}{a_{n-1}}\]
        Using our hypothesis: 
        \[r = r + r\]
        \[r = 2r\]
        Therefore, divide both sides by $r$. It is fair because of the lemma \textcolor{red}{\ref{L1}}:
        \[1 = 2\]
        A contradiction! It is a false statement. Thus we must have that $(a_{n})_{n \in \N}$ does not converge in $\R$.
        
        \item \textcolor{blue}{$a_{n} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1}), n \in \N$.}
        
        We are going to demonstrate it by Strong Induction o over $n \in \N_{0}$:
        \textbf{Bases Cases:}
            \begin{itemize}
                \item[\textasteriskcentered] $\mathit{n = 0}:$ Let $R = \frac{1}{\sqrt{5}}(\tau^{0+1} - \sigma^{0+1})$. Recall that by definition we have that $a_{0} = 1$, so it is enough to verify that $R = 1$: 
                \[R = \frac{1}{\sqrt{5}}(\tau - \sigma)\]
                Using the lemma \textcolor{red}{\ref{L2}.(i)} we get that:
                \[R = \frac{1}{\sqrt{5}}\sqrt{5}\]
                Canceling:
                \[R = 1\]
                \item[\textasteriskcentered] $\mathit{n = 1}:$ Let $R = \frac{1}{\sqrt{5}}(\tau^{1+1} - \sigma^{1+1})$. Recall that by definition we have that $a_{1} = 1$, so it is enough to verify that $R = 1$: 
                \[R = \frac{1}{\sqrt{5}}(\tau^{2} - \sigma^{2})\]
                Using the lemma \textcolor{red}{\ref{L2}.(ii)} we get that:
                \[R = \frac{1}{\sqrt{5}}(\tau - \sigma)\]
                Using the lemma \textcolor{red}{\ref{L2}.(i)} we get that:
                \[R = \frac{1}{\sqrt{5}}\sqrt{5}\]
                Canceling:
                \[R = 1\]
            \end{itemize}
        \textbf{Inductive Step:}
        Suppose the result for $k \in \N$ with $k \leq n$. It is that:
        \[\textbf{(HI)} \hspace{2cm} \forall_{k \in \N_{0}}{\left\{\left(k \leq n\right) \rightarrow \left[a_{k} = \frac{1}{\sqrt{5}}(\tau^{k+1} - \sigma^{k+1})\right]\right\}}\]
        We prove it for $n+1$. It is that:
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+2} - \sigma^{n+2})\]
        By the recursive definition of Fibonacci Sequence:
        \[a_{n+1} = a_{n} + a_{n-1}\]
        By \textbf{(HI)} to $n-1$ and $n$ (they are less or equal to $n$):
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1}) + \frac{1}{\sqrt{5}}(\tau^{n-1+1} - \sigma^{n-1+1})\]
        Use Common Factor factorization with $\frac{1}{\sqrt{5}}$:
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1} + \tau^{n} - \sigma^{n})\]
        Use Common Factor factorization with $\tau^{n+2}$ and $\sigma^{n+2}$:
        \[a_{n+1} = \frac{1}{\sqrt{5}}[\tau^{n+2}(\tau^{-1} + \tau^{-2}) - \sigma^{n+2}( \sigma^{-1} + \sigma^{-2})]\]
        Using the lemma \textcolor{red}{\ref{L2}.(iii)} we can change the parenthesis:
        \[a_{n+1} = \frac{1}{\sqrt{5}}[\tau^{n+2}(1) - \sigma^{n+2}(1)]\]
        \[a_{n+1} = \frac{1}{\sqrt{5}}(\tau^{n+2} - \sigma^{n+2})\]
        So by the Strong Induction Principle we have that for any $n \in \N_{0}$:
        \[a_{n} = \frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1})\]
%        \begin{landscape}
        \item[\textcolor{blue}{(c) }]\textcolor{blue}{$\displaystyle{\lim_{n \to \infty}x_{n} = \tau}$.}
   % <<<<<<<< changed from here      
  \[\begin{NiceArray}{rclr} %<<<< changed
  \displaystyle{\lim_{n \to \infty}{x_{n}}} & = & \displaystyle{\lim_{n \to \infty}{\frac{a_{n+1}}{a_{n}}}} & \left(\text{$x_{n}$ definition}\right)  \\
  &&&\\
  & = & \displaystyle{\lim_{n \to \infty}{\frac{\frac{1}{\sqrt{5}}(\tau^{n+2} - \sigma^{n+2})}{\frac{1}{\sqrt{5}}(\tau^{n+1} - \sigma^{n+1})}}} & \left(\text{Exercise $(b)$ formula}\right)\\
  &&&\\
  & = & \displaystyle{\lim_{n \to \infty}{\cfrac{\frac{\tau^{n+2}}{\tau^{n+2}} - \frac{\sigma^{n+2}}{\tau^{n+2}}}{\frac{\tau^{n+1}}{\tau^{n+1}}\frac{1}{\tau} - \frac{\sigma^{n+1}}{\tau^{n+1}}\frac{1}{\tau}}}} & \Block{}{\text{(Canceling and dividing by} \\ \text{$\tau^{n+2}$} \text{\, up and down)}}\\ %<<<< changed
  &&&\\
  & = & \displaystyle{\lim_{n \to \infty}{\frac{1 - \left(\frac{\sigma}{\tau}\right)^{n+2}}{\frac{1}{\tau} - \frac{1}{\tau}\left(\frac{\sigma}{\tau}\right)^{n+1}}}} & \left(\text{Power properties}\right)\\
  &&&\\
  & = & \displaystyle{\lim_{n \to \infty}{\frac{1 - \left(\frac{\sigma}{\tau}\right)^{n+2}}{\frac{1}{\tau}\left[ 1 - \left(\frac{\sigma}{\tau}\right)^{n+1}\right]}}} & \Block{}{\text{(Common Factor}\\\text{ Factorization)}}\\%<<<< changed
  &&&\\
  & = & \displaystyle{\lim_{n \to \infty}{\frac{1 - \left(\frac{\sigma}{\tau}\right)^{n}\left(\frac{\sigma}{\tau}\right)^{2}}{\frac{1}{\tau}\left[ 1 - \left(\frac{\sigma}{\tau}\right)^{n}\left(\frac{\sigma}{\tau}\right)\right]}}} & \left(\text{Power properties}\right)\\
  &&&\\
  & = & \frac{ \displaystyle{\lim_{n \to \infty}{1} - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}\lim_{n \to \infty}\left(\frac{\sigma}{\tau}\right)^{2}}}}{\displaystyle{\lim_{n \to \infty}{\left(\frac{1}{\tau}\right)}\left[ \lim_{n \to \infty}{1} - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}\lim_{n \to \infty}\left(\frac{\sigma}{\tau}\right)}\right]}} & \left(\text{Limit properties}\right)\\
  &&&\\
  & = & \frac{\displaystyle{1 - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}\left(\frac{\sigma}{\tau}\right)^{2}}}}{\displaystyle{\left(\frac{1}{\tau}\right)\left[1 - \lim_{n \to \infty}{\left(\frac{\sigma}{\tau}\right)^{n}}\left(\frac{\sigma}{\tau}\right)\right]}} & \left(\text{Solving constant limits}\right)\\
  &&&\\
  & = & \frac{\displaystyle{1 - 0\left(\frac{\sigma}{\tau}\right)^{2}}}{\displaystyle{\left(\frac{1}{\tau}\right)\left[1 - 0\left(\frac{\sigma}{\tau}\right)\right]}} & \Block{}{ \text{Using lemmas} \\ \text{ \textcolor{red}{\ref{L2}.(iv)}  and \ref{L3}.)}}\\%<<<< changed
  &&&\\   
    % \[\begin{array}{rclr}
  & = & \displaystyle{\frac{\frac{1}{1}}{\frac{1}{\tau}}} & \left(\text{0 definition}\right)\\%<<<< changed
  &&&\\
    & = & \tau & \left(\text{Means and extremes law}\right)\\
  &&& \\
    % \end{array}\]
 \end{NiceArray}\]        % <<<<<<<< changed to here  
     
        As we wanted!
%        \end{landscape}
        
    \end{enumerate}
\end{exercise}

\end{document}

相关内容