考虑以下代码行:
\documentclass[border = 5pt]{standalone}
\usepackage{pgfplots}
\usepackage{ifthen}
\pgfplotsset{compat=1.14}
\begin{document}
\begin{center}
\begin{tikzpicture}
\begin{axis}[
xmin = 0, xmax = 4 * pi,
ymin = -1.5, ymax = 1.5,
domain = 0 : 3 * pi,
xlabel = $t$,
ylabel = $f(t)$,
legend style={at={(0.8,1)},anchor=north west},
axis x line = center,
axis y line = center,
every axis x label/.append style = {below},
every axis y label/.append style = {left},
samples = 100,
xtick = {0, 3.14, 6.28, 9.42},
xticklabels = {$0$, $\quad\;\;\pi$, $\quad 2\pi$,$3\pi$},
declare function = {
f(\x) = ifthenelse(pi<\x < 2*pi ,-1,1);
f_{1}(\x) = (4 / pi) * sin(deg(\x);
f_{3}(\x) = f_{1}(\x) + (4 / pi) * sin(3 * deg(\x)) / 3.0));
f_{5}(\x) = f_{3}(\x) + (4 / pi) * sin(5 * deg(\x)) / 5.0));
}, ]
\addplot[thick, black] {f(x)};
\addplot[thick,dotted, ultramarine] {f_{1}(x)};
\addplot[thick,dotted, retropurple] {f_{3}(x)};
\addplot[thick,dotted, cyan] {f_{5}(x)};
\legend{$f(t)$, $f_1(t)$, $f_3(t)$, $f_5(t)$};
\draw[gray, dashed] (5*pi, 0.5) -- (5 * pi, 0.5);
\draw[gray, dashed] (5* pi, 0) -- (5 * pi, 1);
\end{axis}
\end{tikzpicture}
\end{center}
问题是由于 ifthenelse 语句导致步进函数在图形上不正确(粗黑线),我不知道如何解决这个小问题,我应该获得以下内容:
当 t 介于 0 和 pi 之间时,输出 1
t 在 pi 和 2pi 之间时输出 -1
当 t 介于 2pi 和 3pi 之间时,输出为 1
任何帮助我都会非常感激。我为我之前的帖子进一步道歉 :)
答案1
欢迎来到 TeX.SX!您的方法确实有效,但是,似乎您需要ifthenelse
稍微重新表述一下该语句。另外,请注意,要使用此语句,您无需加载包ifthen
。以下内容应按预期工作(我将颜色更改为默认颜色并注释掉环境center
):
\documentclass[border = 5pt]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.14}
\begin{document}
%\begin{center}
\begin{tikzpicture}
\begin{axis}[
xmin = 0, xmax = 4 * pi,
ymin = -1.5, ymax = 1.5,
domain = 0 : 3*pi,
xlabel = $t$,
ylabel = $f(t)$,
legend style = {at = {(0.8,1)}, anchor = north west},
axis x line = center,
axis y line = center,
every axis x label/.append style = {below},
every axis y label/.append style = {left},
samples = 100,
xtick = {0, 3.14, 6.28, 9.42},
xticklabels = {$0$, $\quad\;\;\pi$, $\quad 2\pi$, $3\pi$},
declare function = {
f(\x) = ifthenelse(and(pi < \x, \x < 2 * pi), -1, 1);
f_{1}(\x) = (4 / pi) * sin(deg(\x);
f_{3}(\x) = f_{1}(\x) + (4 / pi) * sin(3 * deg(\x)) / 3.0));
f_{5}(\x) = f_{3}(\x) + (4 / pi) * sin(5 * deg(\x)) / 5.0));
}, ]
\addplot[thick, black] {f(x)};
\addplot[thick, dotted, blue] {f_{1}(x)};
\addplot[thick, dotted, purple] {f_{3}(x)};
\addplot[thick, dotted, cyan] {f_{5}(x)};
\legend{$f(t)$, $f_1(t)$, $f_3(t)$, $f_5(t)$};
\draw[gray, dashed] (5 * pi, 0.5) -- (5 * pi, 0.5);
\draw[gray, dashed] (5 * pi, 0) -- (5 * pi, 1);
\end{axis}
\end{tikzpicture}
%\end{center}
\end{document}
我不完全明白为什么需要拆分不等式链,但我猜它总是返回真,因为pi
它总是小于2 * pi
(无论是什么\x
)。