我使用包framed
来为部分文本的背景着色。我注意到shaded
环境在彩色框前后使用了额外的空间。在寻找如何减少这个空间时,我找到了宏
\setlength{\OuterFrameSep}{0pt}
并尝试了一下。但我感觉这个宏不起作用。有没有办法设置\OuterFrameSep
并减少垂直空间?下面我添加了示例代码
\scrollmode
\newtheorem{theorem}{Theorem}[section]
\newtheorem{definition}[theorem]{Definition}
\usepackage{xcolor}
\usepackage{framed}
\setlength{\OuterFrameSep}{0pt}
\begin{document}
\title{Test File}
\begin{abstract}
In this paper I test vertical space in shaded environment.
\end{abstract}
\maketitle
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\definecolor{shadecolor}{rgb}{.94,.94,.95}%
\begin{shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{shaded}%
\begin{shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{shaded}%
You can see that space between definitions 3 and 4 is larger
than space between definition 1 and 2.
\end{document}
```
答案1
我查看了 framed.sty 文件并尝试重现它们的步骤。在下面的代码中,你会发现环境 Shaped 占用的空间比环境shaped 要小
\documentclass{amsart}
\scrollmode
\newtheorem{theorem}{Theorem}[section]
\newtheorem{definition}[theorem]{Definition}
\usepackage{xcolor}
\usepackage{framed}
\setlength{\OuterFrameSep}{0pt}
\begin{document}
\title{Test File}
\begin{abstract}
In this paper I test vertical space in shaded environment.
\end{abstract}
\maketitle
\newlength\OuterFrameSep \OuterFrameSep=0pt \relax
\newenvironment{Shaded}{%
\def\FrameCommand{\fboxsep0pt \colorbox{shadecolor}}%
\MakeFramed {\FrameRestore}}%
{\endMakeFramed}
\noindent
\begin{tabular}{@{}l|r}
\begin{minipage}{175pt}
\setlength{\parindent}{4mm}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{minipage}
&
\begin{minipage}{175pt}
\setlength{\parindent}{4mm}
\definecolor{shadecolor}{rgb}{.94,.94,.95}%
\begin{shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{shaded}%
\begin{shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{shaded}%
\end{minipage}
\end{tabular}
\noindent
\begin{tabular}{@{}l|r}
\begin{minipage}{175pt}
\definecolor{shadecolor}{rgb}{.94,.94,.95}%
\begin{shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{shaded}%
\begin{shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{shaded}%
\end{minipage}
&
\begin{minipage}{175pt}
\setlength{\parindent}{4mm}
\definecolor{shadecolor}{rgb}{.94,.94,.95}%
\begin{Shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{Shaded}%
\begin{Shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{Shaded}%
\end{minipage}
\end{tabular}
\noindent
\begin{tabular}{@{}l|r}
\begin{minipage}{175pt}
\setlength{\parindent}{4mm}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{minipage}
&
\begin{minipage}{175pt}
\setlength{\parindent}{4mm}
\definecolor{shadecolor}{rgb}{.94,.94,.95}%
\begin{Shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{Shaded}%
\begin{Shaded}
\begin{definition}
Let $V$ be vector space.
The righ-side representation
$f$ of group $G$ in left vector space $V$ of columns is called
linear $G$-representation.
\qed%
\end{definition}%
\end{Shaded}%
\end{minipage}
\end{tabular}
\end{document}
它会在垂直和水平方向上减少文本周围的空间。我不确定是否可以仅在垂直方向上减少。如果我设置\fboxsep-8pt
部分文本不会被颜色覆盖