我试过这样,但没有用
\begin{equation}
\begin{cases}
\varlimsup_{r \to \infty} \dfrac{\log ^{+} n\left\{U_{k=1}^{N} \Omega\left(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r\right), f=0\right\}}{\log r}<\mu, &\text{if } \mu>0 \tag{2.5}\label{e2.5}\\
\varlimsup_{r \rightarrow \infty} \dfrac{\sum_{k=1}^{N} n\left(\Omega\left(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r\right), f=0\right)}{\log r}<+\infty, & \text{if } \mu=0,\tag{2.6}\label{e2.6}
\end{cases}
\end{equation}
答案1
另一个解决方案是基于empheq
和alignat
,可以完全控制两个对齐列之间的间距。还有一些改进( left … \right
这里有些对是不必要的,我更喜欢用 替换其他对\bigl … \bigr
)。最后,U_{k=1}^N
编码应该是\bigcup_{k=1}^N
。
\documentclass{article}
\usepackage{empheq}
\counterwithin{equation}{section}
\begin{document}
\setcounter{section}{2}
\begin{empheq}[left=\empheqlbrace]{alignat=2}
& \varlimsup_{r \to \infty} \frac{\log ^{+} n\bigl\{\bigcup_{k=1}^{N} \Omega(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r), f=0\bigr\}}{\log r}<\mu,& \quad & \text{if } \mu>0 \label{eqn1}\\
%
& \varlimsup_{r \rightarrow \infty} \frac{\sum\limits_{k=1}^{N} n\bigl(\Omega(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r), f=0\bigr)}{\log r}<+\infty, & & \text{if } \mu=0 \label{eqn2}
\end{empheq}
\end{document}
答案2
使用该empheq
包,您可以在案例内分配方程编号。
\documentclass[preview]{standalone}
\usepackage{amsmath}
\usepackage{empheq}
\begin{document}
\begin{empheq}[left={\empheqlbrace }]{align}
&\varlimsup_{r \to \infty} \dfrac{\log ^{+} n\left\{U_{k=1}^{N} \Omega\left(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r\right), f=0\right\}}{\log r}<\mu,\quad && \text{if } \mu>0 \label{eqn1}\\
%
&\varlimsup_{r \rightarrow \infty} \dfrac{\sum_{k=1}^{N} n\left(\Omega\left(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r\right), f=0\right)}{\log r}<+\infty,\quad && \text{if } \mu=0 \label{eqn2}
\end{empheq}
\end{document}
答案3
包含:{DispWithArrows}
witharrows
\documentclass{article}
\usepackage{amsmath}
\usepackage{witharrows}
\begin{document}
\begin{DispWithArrows}<>[format=ll,fleqn]
\varlimsup\limits_{r \to \infty} \dfrac{\log ^{+} n\left\{U_{k=1}^{N} \Omega\left(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r\right), f=0\right\}}{\log r}<\mu,\quad & \text{if } \mu>0 \label{eqn1}\\
%
\varlimsup\limits_{r \rightarrow \infty} \dfrac{\sum_{k=1}^{N} n\left(\Omega\left(\theta_{k}+\varepsilon, \theta_{k+1}-\varepsilon ; r\right), f=0\right)}{\log r}<+\infty,\quad & \text{if } \mu=0 \label{eqn2}
\end{DispWithArrows}
\end{document}