parskip 行为异常;更改字母会占用大量空间

parskip 行为异常;更改字母会占用大量空间

这个问题只是出于好奇。在纠正了一个拼写错误(“ad”改成了“at”)后,我注意到更改一个字母会完全改变输出(在第一种情况下,编译器无法在两行中完成,而在第二种情况下,它只需要两行即可完成。

梅威瑟:

\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[parfill]{parskip}
\usepackage[top=3.5cm,bottom=3.5cm,left=3.5cm,right=3.5cm]{geometry}

\begin{document}
    Hint: for a fixed $y$, let $f(x):=\sin(x+y)-\sin(x)\cos(y)-\cos(x)\sin(y)$; prove that $f''=-f$ (so that $f$ equals its Taylor series centered ad $0$) and $f(0)=f'(0)=0$.

    Hint: for a fixed $y$, let $f(x):=\sin(x+y)-\sin(x)\cos(y)-\cos(x)\sin(y)$; prove that $f''=-f$ (so that $f$ equals its Taylor series centered at $0$) and $f(0)=f'(0)=0$.
\end{document}

输出:

在此处输入图片描述

谁能解释为什么会发生这种情况?

答案1

parfill 选项强制在段落末尾留出 30pt 的自由空间,现在刚好低于这个限制。通过稍微减少该值,您也可以在第一个版本中避免换行(我删除了inputenc,因为当前的 LaTeX 中不再需要它):

\documentclass[11pt,a4paper]{article}
\usepackage[parfill=29.1pt]{parskip}
\usepackage[top=3.5cm,bottom=3.5cm,left=3.5cm,right=3.5cm]{geometry}

\begin{document}
    Hint: for a fixed $y$, let $f(x):=\sin(x+y)-\sin(x)\cos(y)-\cos(x)\sin(y)$; prove that $f''=-f$ (so that $f$ equals its Taylor series centered ad $0$) and $f(0)=f'(0)=0$.

    Hint: for a fixed $y$, let $f(x):=\sin(x+y)-\sin(x)\cos(y)-\cos(x)\sin(y)$; prove that $f''=-f$ (so that $f$ equals its Taylor series centered at $0$) and $f(0)=f'(0)=0$.
\end{document}

在此处输入图片描述

相关内容