我正在进行一个冗长的证明,通过归纳法证明 (i) - (vi) 成立。
在证明过程中,我多次提到(i),...,(iv),并希望它们成为超链接,以便当读者点击例如(i)时,PDF 会跳转到(i) - (vi)的概述。
\documentclass[a4paper,fontsize=13pt]{scrartcl}
\usepackage[english, main=ngerman]{babel}
\usepackage[a4paper,left=3cm,right=3cm,top=2.5cm,bottom=2.5cm]{geometry}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{multirow}
\usepackage{graphicx}
\usepackage{xfrac}
\usepackage{enumitem}
\usepackage{aligned-overset}
\usepackage{hyperref}
\begin{document}
We show by induction that for all $k \in \mathbb{N}_{0}$ it holds that
%
\begin{align*}
&\text{(i)} & x^{2 k}&=(\beta_{1} \beta_{2})^{k} x^{0} \,, \quad& &\text{(iii)} & \Delta_{2 k}&=(\beta_{1} \beta_{2})^{k} \Delta_{0}\,, \quad& & \text{(v)}& \rho_{2 k} &\equiv \theta \, ,\\
&\text{(ii)} & x^{2 k+1}&=x^{2 k} \,, \quad& &\text{(iv)} & \Delta_{2 k+1}&=\beta_{1}\left(\beta_{1} \beta_{2}\right)^{k} \Delta_{0}\,, \quad& & \text{(vi)}& \rho_{2 k+1} &\equiv 1 \, .
\end{align*}
%...
%several pages later
%...
Because of (i) and (ii) we have that ...
\end{document}
答案1
重做
\documentclass[a4paper,fontsize=12pt]{scrartcl}
\usepackage[english, main=ngerman]{babel}
\usepackage[a4paper,left=3cm,right=3cm,top=2.5cm,bottom=2.5cm]{geometry}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{multirow}
\usepackage{graphicx}
\usepackage{enumitem}
\usepackage{aligned-overset}
\usepackage{hyperref}
\makeatletter
\newcommand{\hit}[2]{%
\ifmeasuring@
\else
\phantomsection
\expandafter\gdef\csname hit@#1\endcsname{#2}%
\ltx@label{#1}%
\fi
\textup{(#2)}%
}
\newcommand{\hir}[1]{%
\hyperref[#1]{%
\ifcsname hit@#1\endcsname
\textup{(\csname hit@#1\endcsname)}%
\else
??%
\fi
}%
}
\makeatother
\begin{document}
We show by induction that for all $k \in \mathbb{N}_{0}$ it holds that
%
\begin{alignat*}{6}
& \hit{h1}{i}\ & x^{2 k}&=(\beta_{1} \beta_{2})^{k} x^{0} \,,
&\qquad& \hit{h3}{iii}\ & \Delta_{2 k}&=(\beta_{1} \beta_{2})^{k} \Delta_{0}\,,
&\qquad& \hit{h5}{v}\ & \rho_{2 k} &\equiv \theta \,,
\\
& \hit{h2}{ii}\ & x^{2 k+1}&=x^{2 k} \,,
&\qquad& \hit{h4}{iv}\ & \Delta_{2 k+1}&=\beta_{1}(\beta_{1} \beta_{2})^{k} \Delta_{0}\,,
&\qquad& \hit{h6}{vi}\ & \rho_{2 k+1} &\equiv 1 \, .
\end{alignat*}
%...
%several pages later
%...
Because of \hir{h1} and \hir{h2} we have that ...
\end{document}
旧答案
一种简单的方法是使用\hypertarget
和\hyperlink
;麻烦的是需要使用两个参数,但也许可以设计出更好的方法。
\documentclass[a4paper,fontsize=12pt]{scrartcl}
\usepackage[english, main=ngerman]{babel}
\usepackage[a4paper,left=3cm,right=3cm,top=2.5cm,bottom=2.5cm]{geometry}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{mathtools}
\usepackage{multirow}
\usepackage{graphicx}
\usepackage{enumitem}
\usepackage{aligned-overset}
\usepackage{hyperref}
\newcommand{\hit}[2]{\raisebox{\fontcharht\font`T}{\hypertarget{#1}{}}{\textup{(#2)}}}
\newcommand{\hir}[2]{\hyperlink{#1}{\textup{(#2)}}}
\begin{document}
We show by induction that for all $k \in \mathbb{N}_{0}$ it holds that
%
\begin{align*}
&\hit{h1}{i} & x^{2 k}&=(\beta_{1} \beta_{2})^{k} x^{0} \,,
&&\hit{h3}{iii} & \Delta_{2 k}&=(\beta_{1} \beta_{2})^{k} \Delta_{0}\,,
&&\hit{h5}{v} & \rho_{2 k} &\equiv \theta \,,
\\
&\hit{h2}{ii} & x^{2 k+1}&=x^{2 k} \,,
&&\hit{h4}{iv} & \Delta_{2 k+1}&=\beta_{1}(\beta_{1} \beta_{2})^{k} \Delta_{0}\,,
&&\hit{h6}{vi} & \rho_{2 k+1} &\equiv 1 \, .
\end{align*}
%...
%several pages later
%...
\newpage
Because of \hir{h1}{i} and \hir{h2}{ii} we have that ...
\end{document}
答案2
除非在某种设置中显示这六个标准是绝对必要的align
,否则我会使用内联enumerate
列表。
\documentclass[a4paper,fontsize=13pt]{scrartcl}
\usepackage[english, main=ngerman]{babel}
\usepackage[a4paper,hmargin=3cm]{geometry}
\usepackage[inline]{enumitem}
\usepackage{aligned-overset}
\usepackage{amssymb}
\usepackage[colorlinks,allcolors=blue]{hyperref}
\usepackage[noabbrev,nameinlink]{cleveref}
\begin{document}
We show by induction that for all $k \in \mathbb{N}_{0}$ it holds that
\begin{enumerate*}[label=(\roman*)]
\item $x^{2 k}=(\beta_{1} \beta_{2})^{k} x^{0}$\label{item:1},
\item $x^{2 k+1}=x^{2 k}$\label{item:2},
\item $\Delta_{2 k}=(\beta_{1} \beta_{2})^{k} \Delta_{0}$,
\item $\Delta_{2 k+1}=\beta_{1}(\beta_{1} \beta_{2})^{k} \Delta_{0}$,
\item $\rho_{2 k} \equiv \theta$, and
\item $\rho_{2 k+1} \equiv 1$.
\end{enumerate*}
Because of \labelcref{item:1,item:2} we have \dots
\end{document}