我正在使用模板此链接。从 PDF 中可以看出,公式编号上的括号(例如第 3 章公式 1)都是右手的。我该如何解决这个问题?总的来说,我甚至找不到他们加载包的位置amsmath
。
答案1
经过一些更改后,我能够成功编译thesis.tex
发行版中包含的文件(稍后我会列出)。
关于您的问题,我发现方程式数字中的所有括号都没有问题。
以防万一,我已将样本纸的样本包含在amsmath
包裹中。文件名:\testmath.tex
检查其他分隔符。未发现任何问题。
变化
(1)字体。我没有字体David CLM
,但我发现DavidCLM
字体已经在我的系统目录中。(可能是 David Libre 以前项目中的。请参阅在 LuaLaTeX 或 XeLaTeX 中我可以用哪些希伯来字体替代 David?)
因此我注释了第 133 行iitthesis.cls
并 \newfontfamily
在序言中定义了指向正确位置的。
(2)在文件中, my-thesis-specific.tex
我将 改为\renewcommand\lips@dolipsum{
,以\newcommand\lips@dolipsum{
消除 ! LaTeX Error: Command \lips@dolipsum undefined
。
笔记从官方网站获取的完整套件https://github.com/eyalroz/technion-iit-thesis/而 Overleaf 没有这个问题。(2020 年 3 月 7 日修复)
(3)我删除了一条错误信息(来自倒数第二段之前的段落\abstractHebrew{
)注释\include{front/abstract}
。其他希伯来语文本排版正常。见最后一张图
等式 3.1
这是新的thesis.tex
\documentclass[PhD,noabbrevs]{misc/iitthesis}
\include{misc/thesis-fields}
\include{front/personal-acks}
%\include{front/abstract}
\include{front/abbrevs}
\usepackage{misc/iitthesis-extra}
\include{misc/my-general}
\include{misc/my-thesis-specific}
\usepackage{multibib}
\newcites{pubinfo}{Acknowledgement page references}
\def\iitthesisextramultibibdefs{}
\usepackage{amsmath} % added to test eq. samples <<<<<<<<<<<<<<<<<<<<<<<<<<<<
%\newfontfamily\hebrewfont[Script=Hebrew]{David CLM} % changed: line 133 of iitthesis.cls <<<<<<<<<<<
\newfontfamily\hebrewfont[% added <<<<<<<<<<<<<<<<<<<<<
Path =C:/Windows/Fonts/,%
Script=Hebrew,%
Language = Hebrew ,
Extension =.ttf,%
UprightFont =*-Medium,%
BoldFont =*-Bold,%
ItalicFont =*-MediumItalic,%
BoldItalicFont =*-BoldItalic%
]{DavidCLM}
\begin{document}
\makefrontmatter
\include{main/intro}
\include{main/prelims}
\include{main/mainchap1}
\include{main/short_testmath} % added <<<<<<<<<<<<<<<
\include{main/conclusion}
\appendix
\include{main/appendix1}
\makebackmatter
\end{document}
这是文件short_testmath.tex
%% file short_testmath.tex
\newcommand{\wt}{\widetilde}
\newcommand{\wh}{\widehat}
\section{Introduction}
This paper contains examples of various features from \AmS-\LaTeX{}.
Sample Paper for the \textbf{amsmath} Package.
File name: \textbf{testmath.tex}
\section{Enumeration of Hamiltonian paths in a graph}
Let $\mathbf{A}=(a_{ij})$ be the adjacency matrix of graph $G$. The
corresponding Kirchhoff matrix $\mathbf{K}=(k_{ij})$ is obtained from
$\mathbf{A}$ by replacing in $-\mathbf{A}$ each diagonal entry by the
degree of its corresponding vertex; i.e., the $i$th diagonal entry is
identified with the degree of the $i$th vertex. It is well known that
\begin{equation}
\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$},
\quad i=1,\dots,n
\end{equation}
Let $C_{i(j)}$ be the set of graphs obtained from $G$ by attaching edge
$(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=\bigcup_j
C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a
subset of $C_i$. Note that the cardinality of $C_i$ is $k_{ii}\det
\mathbf{K}(i|i)$. Let $\wh X=\{\hat x_1,\dots,\hat x_n\}$.
\begin{equation}\label{H-cycles}
\biggl(\prod^n_{\,j=1}\hat x_j\biggr)H_c=\frac{1}{2}\hat k_{ij}\det
\wh{\mathbf{K}}(i|i),\qquad i=1,\dots,n.
\end{equation}
Then, it follows that
%\begin{lem}\label{lem-det}
\begin{equation}\label{detprod}
\prod_{i\in\mathbf{n}}
\biggl(\sum_{\,j\in\mathbf{n}}b_{ij}\hat y_j\biggr)
=\biggl(\prod_{\,i\in\mathbf{n}}\hat y_i\biggr)\det\mathbf{B}.
\end{equation}
\begin{equation}\label{detB}
\det\mathbf{B}=
\sum^n_{l =0}\sum_{I_l \subseteq n}
\prod_{i\in I_l}(b_{ii}-\lambda_i)
\det\mathbf{B}^{(\lambda)}(I_l |I_l ),
\end{equation}
\begin{equation}
\mathbf{K}(t,t_1,\dots,t_n)
=\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
\hdotsfor[2]{4}\\
-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix},
\end{equation}
\begin{equation}\label{j:mark}
\begin{split}
H_c=&
\frac{n_1!\,n_2!\,n_3!}
{n_1+n_2+n_3}\sum_i\left[\binom{n_1}{i}
\binom{n_2}{n_3-n_1+i}\binom{n_3}{n_3-n_2+i}\right.\\
&+\left.\binom{n_1-1}{i}
\binom{n_2-1}{n_3-n_1+i}
\binom{n_3-1}{n_3-n_2+i}\right].\end{split}
\end{equation}