我有这个等式
\documentclass{article}
\usepackage[a4paper, total={6in, 8in}]{geometry}
\usepackage[utf8]{inputenc}
\usepackage{breqn}
\usepackage{amsmath}
\usepackage{comment}
\usepackage{xfrac}
\begin{equation}
\begin{split}
g(z; \mu, b) & = KL(\widetilde{p}(z^{(1)}) \vert \vert \widetilde{q}(z^{(1)}))\\
& = \int_{z}\widetilde{p}(z^{(1)}) \log (\frac{\widetilde{p}(z^{(1)})}{\widetilde{q}(z^{(1)})}) dz \\
& = \int_{z} \widetilde{p}(z^{(1)}) \log (\widetilde{p}(z^{(1)})) dz - \int_{z} \widetilde{p}(z^{(1)}) \log (\widetilde{q}(z^{(1)})) dz \\
& = \int_{z} \widetilde{p}(z^{(1)}) \log (\widetilde{p}(z^{(1)})) dz \\
& = \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log(p(z^{(1)}|z^{(0)})q(z^{(0)})) dz- \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log(\widetilde{q}(z^{(1)}))dz \\
& = \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)}) \log(p(z^{(1)}|z^{(0)})) dz + \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log (q(z^{(0)})) dz \\
& - \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log(\widetilde{q}(z^{(1)}))dz \\
\end{split}
\end{equation}
编译时,- 符号(最后一行)直接放在 = 符号下面。我想把它放在右边一点。有这种可能吗?
我也尝试使用 \begin{dmath} 。
\begin{dmath}
g(z; \mu, b)
= KL(\widetilde{p}(z^{(1)}) \vert \vert \widetilde{q}(z^{(1)}))
= \int_{z}\widetilde{p}(z^{(1)}) \log (\frac{\widetilde{p}(z^{(1)})}{\widetilde{q}(z^{(1)})}) dz
= \int_{z} \widetilde{p}(z^{(1)}) \log (\widetilde{p}(z^{(1)})) dz - \int_{z} \widetilde{p}(z^{(1)}) \log (\widetilde{q}(z^{(1)})) dz
= \int_{z} \widetilde{p}(z^{(1)}) \log (\widetilde{p}(z^{(1)})) dz
= \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log(p(z^{(1)}|z^{(0)})q(z^{(0)})) dz- \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log(\widetilde{q}(z^{(1)}))dz
= \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)}) \log(p(z^{(1)}|z^{(0)})) dz + \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log (q(z^{(0)})) dz
- \int_{z}p(z^{(1)}|z^{(0)})q(z^{(0)})\log(\widetilde{q}(z^{(1)}))dz
\end{dmath}
但出于某种原因,它无法按预期进行编译!我前一天用过它,它能用,但今天就不行了!
非常感谢您的帮助:)
答案1
对于需要稍微缩进的行,您可以将其更改&
为。&\qquad
\documentclass{article}
\usepackage[a4paper, total={6in, 8in}]{geometry}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\begin{document}
\begin{equation}
\begin{split}
g(z; \mu, b)
& = KL(\tilde{p}(z^{(1)}) \,\Vert\, \tilde{q}(z^{(1)}))\\
& = \int_{z}\tilde{p}(z^{(1)}) \log \Bigl(\frac{\tilde{p}(z^{(1)})}{\tilde{q}(z^{(1)})}\Bigr)\, dz \\
& = \int_{z} \tilde{p}(z^{(1)}) \log (\tilde{p}(z^{(1)}))\, dz \\
&\qquad - \int_{z} \tilde{p}(z^{(1)}) \log (\tilde{q}(z^{(1)}))\, dz \\
& = \int_{z} \tilde{p}(z^{(1)}) \log (\tilde{p}(z^{(1)}))\, dz \\
& = \int_{z}p(z^{(1)}\mid z^{(0)})q(z^{(0)})\log(p(z^{(1)}\mid z^{(0)})q(z^{(0)}))\, dz \\
&\qquad - \int_{z}p(z^{(1)}\mid z^{(0)})q(z^{(0)})\log(\tilde{q}(z^{(1)}))dz \\
& = \int_{z}p(z^{(1)}\mid z^{(0)})q(z^{(0)}) \log(p(z^{(1)}\mid z^{(0)}))\, dz \\
&\qquad + \int_{z}p(z^{(1)}\mid z^{(0)})q(z^{(0)})\log (q(z^{(0)}))\, dz \\
&\qquad - \int_{z}p(z^{(1)}\mid z^{(0)})q(z^{(0)})\log(\tilde{q}(z^{(1)}))dz \\
\end{split}
\end{equation}
\end{document}