我正在尝试制作表 2这论文更具可读性。到目前为止,我的尝试总结在下面的代码中:
\documentclass[11pt]{article}
\usepackage{mathtools,amsmath,amssymb}
\usepackage{booktabs}
\usepackage{feynmp-auto}
\begin{document}
\begin{table}
\centering
\begin{tabular}{lc|lc|lc}\toprule
\multicolumn{2}{c|} {$X^{3}$} & \multicolumn{2}{c|} {$\varphi^{6}$ and
$\varphi^{4} D^{2}$} & \multicolumn{2}{c} {$\psi^{2} \varphi^{3}$}
\\
\midrule
$Q_{G} $&$ f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} $&$ Q_{\varphi} $&$ (\varphi^{\dagger} \varphi )^{3} $&$ Q_{e \varphi} $&$ (\varphi^{\dagger} \varphi ) (\bar{l}_{p} e_{r} \varphi ) $\\
$Q_{\widetilde{G}} $&$ f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} $&$ Q_{\varphi \square} $&$ (\varphi^{\dagger} \varphi ) \square (\varphi^{\dagger} \varphi ) $&$ Q_{u \varphi} $&$ (\varphi^{\dagger} \varphi ) (\bar{q}_{p} u_{r} \widetilde{\varphi} ) $\\
$Q_{W} $&$ \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} $&$ Q_{\varphi D} $&$ (\varphi^{\dagger} D^{\mu} \varphi )^{\star} (\varphi^{\dagger} D_{\mu} \varphi ) $&$ Q_{d \varphi} $&$ (\varphi^{\dagger} \varphi ) (\bar{q}_{p} d_{r} \varphi ) $\\
$Q_{\widetilde{W}} $&$ \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} $& & & & \\
\midrule
\multicolumn{2}{c|} {$X^{2} \varphi^{2}$} & \multicolumn{2}{c|} {$\psi^{2} X \varphi$} & \multicolumn{2}{c} {$\psi^{2} \varphi^{2} D$} \\
\midrule
$Q_{\varphi G} $&$ \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} $&$ Q_{e W} $&$ (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} $&$ Q_{\varphi l}^{(1)} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{l}_{p} \gamma^{\mu} l_{r} ) $\\
$Q_{\varphi \widetilde{G}} $&$ \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} $&$ Q_{e B} $&$ (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \varphi B_{\mu \nu} $&$ Q_{\varphi l}^{(3)} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r} ) $\\
$Q_{\varphi W} $&$ \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} $&$ Q_{u G} $&$ (\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r} ) \widetilde{\varphi} G_{\mu \nu}^{A} $&$ Q_{\varphi e} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{e}_{p} \gamma^{\mu} e_{r} ) $\\
$Q_{\varphi \widetilde{W}} $&$ \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} $&$ Q_{u W} $&$ (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} $&$ Q_{\varphi q}^{(1)} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{q}_{p} \gamma^{\mu} q_{r} ) $\\
$Q_{\varphi B} $&$ \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} $&$ Q_{u B} $&$ (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \widetilde{\varphi} B_{\mu \nu} $&$ Q_{\varphi q}^{(3)} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} ) $\\
$Q_{\varphi \tilde{B}} $&$ \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} $&$ Q_{d G} $&$ (\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r} ) \varphi G_{\mu \nu}^{A} $&$ Q_{\varphi u} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{u}_{p} \gamma^{\mu} u_{r} ) $\\
$Q_{\varphi W B} $&$ \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} $&$ Q_{d W} $&$ (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} $&$ Q_{\varphi d} $&$ (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D}_{\mu} \varphi ) (\bar{d}_{p} \gamma^{\mu} d_{r} ) $\\
$Q_{\varphi \widetilde{W} B} $&$ \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} $&$ Q_{d B} $&$ (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \varphi B_{\mu \nu} $&$ Q_{\varphi u d} $&$ i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi ) (\bar{u}_{p} \gamma^{\mu} d_{r} ) $\\
\bottomrule
\end{tabular}
\end{table}
\end{document}
我认为这个版本已经比原来的版本好多了,因为它减少了表格中的垂直线数量,但不知何故,它的可读性似乎也降低了。有人能建议一些提高可读性的方法吗?
答案1
您可以先在显示的方程中使用数组环境来简化代码,然后使用geometry
包来获得更合适的边距。此外,设置arraystretch
为 2 会让它看起来不那么紧。
amsmath
无关:如果您加载,则无需加载mathtools
:后者会为您完成。
\documentclass[11pt]{article}
\usepackage{mathtools, amssymb}
\usepackage{booktabs}
\usepackage{geometry}
\begin{document}
\[
\centering\renewcommand{\arraystretch}{2}
\begin{array}{lc|lc|lc}\toprule
\multicolumn{2}{c|} {X^{3}} & \multicolumn{2}{c|} {\varphi^{6}\text{ and }
\varphi^{4} D^{2}} & \multicolumn{2}{c} {\psi^{2} \varphi^{3}}
\\
\midrule
Q_{G} & f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} & Q_{\varphi} & (\varphi^{\dagger} \varphi )^{3} & Q_{e \varphi} & (\varphi^{\dagger} \varphi ) (\bar{l}_{p} e_{r} \varphi ) \\
Q_{\widetilde{G}} & f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} & Q_{\varphi \square} & (\varphi^{\dagger} \varphi ) \square (\varphi^{\dagger} \varphi ) & Q_{u \varphi} & (\varphi^{\dagger} \varphi ) (\bar{q}_{p} u_{r} \widetilde{\varphi} ) \\
Q_{W} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} & Q_{\varphi D} & (\varphi^{\dagger} D^{\mu} \varphi )^{\star} (\varphi^{\dagger} D_{\mu} \varphi ) & Q_{d \varphi} & (\varphi^{\dagger} \varphi ) (\bar{q}_{p} d_{r} \varphi ) \\
Q_{\widetilde{W}} & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} & & & & \\
\midrule
\multicolumn{2}{c|} {X^{2} \varphi^{2}} & \multicolumn{2}{c|} {\psi^{2} X \varphi} & \multicolumn{2}{c} {\psi^{2} \varphi^{2} D} \\
\midrule
Q_{\varphi G} & \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} & Q_{e W} & (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} & Q_{\varphi l}^{(1)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{l}_{p} \gamma^{\mu} l_{r} ) \\
Q_{\varphi \widetilde{G}} & \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} & Q_{e B} & (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \varphi B_{\mu \nu} & Q_{\varphi l}^{(3)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r} ) \\
Q_{\varphi W} & \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} & Q_{u G} & (\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r} ) \widetilde{\varphi} G_{\mu \nu}^{A} & Q_{\varphi e} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{e}_{p} \gamma^{\mu} e_{r} ) \\
Q_{\varphi \widetilde{W}} & \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} & Q_{u W} & (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} & Q_{\varphi q}^{(1)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{q}_{p} \gamma^{\mu} q_{r} ) \\
Q_{\varphi B} & \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} & Q_{u B} & (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \widetilde{\varphi} B_{\mu \nu} & Q_{\varphi q}^{(3)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} ) \\
Q_{\varphi \tilde{B}} & \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} & Q_{d G} & (\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r} ) \varphi G_{\mu \nu}^{A} & Q_{\varphi u} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{u}_{p} \gamma^{\mu} u_{r} ) \\
Q_{\varphi W B} & \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} & Q_{d W} & (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} & Q_{\varphi d} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D}_{\mu} \varphi ) (\bar{d}_{p} \gamma^{\mu} d_{r} ) \\
Q_{\varphi \widetilde{W} B} & \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} & Q_{d B} & (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \varphi B_{\mu \nu} & Q_{\varphi u d} & i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi ) (\bar{u}_{p} \gamma^{\mu} d_{r} ) \\
\bottomrule
\end{array}
\]
\end{document}
答案2
我会使用array
而不是tabular
,通过包中定义的宏 \addgapedcells 添加更多空间makecell
。对于水平线也会使用Xhline{<width>}
:
\documentclass[11pt]{article}
\usepackage{mathtools,amssymb}
\usepackage{makecell}
\begin{document}
\begin{table}
\setcellgapes{3pt}
\makegapedcells
\[
\begin{array}{@{} lc|lc|lc @{}}
\Xhline{1pt}
\multicolumn{2}{c|}{X^{3}}
& \multicolumn{2}{c|}{\varphi^{6} $ and $ \varphi^{4}D^{2}}
& \multicolumn{2}{c} {\psi^{2} \varphi^{3}} \\
\Xhline{0.5pt}
Q_{G} & f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}
& Q_{\varphi} & (\varphi^{\dagger} \varphi )^{3} & Q_{e \varphi} & (\varphi^{\dagger} \varphi ) (\bar{l}_{p} e_{r} \varphi ) \\
Q_{\widetilde{G}} & f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}
& Q_{\varphi \square} & (\varphi^{\dagger} \varphi ) \square (\varphi^{\dagger} \varphi ) & Q_{u \varphi} & (\varphi^{\dagger} \varphi ) (\bar{q}_{p} u_{r} \widetilde{\varphi} ) \\
Q_{W} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} & Q_{\varphi D} & (\varphi^{\dagger} D^{\mu} \varphi )^{\star} (\varphi^{\dagger} D_{\mu} \varphi ) & Q_{d \varphi} & (\varphi^{\dagger} \varphi ) (\bar{q}_{p} d_{r} \varphi ) \\
Q_{\widetilde{W}} & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}
& & & & \\
\Xhline{0.5pt}
\multicolumn{2}{c|} {X^{2}\varphi^{2}}
& \multicolumn{2}{c|} {\psi^{2} X \varphi}
& \multicolumn{2}{c} {\psi^{2} \varphi^{2}D} \\
\Xhline{0.5pt}
Q_{\varphi G} & \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} & Q_{e W} & (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} & Q_{\varphi l}^{(1)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{l}_{p} \gamma^{\mu} l_{r} ) \\
Q_{\varphi \widetilde{G}} & \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} & Q_{e B} & (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \varphi B_{\mu \nu} & Q_{\varphi l}^{(3)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r} ) \\
Q_{\varphi W} & \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} & Q_{u G} & (\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r} ) \widetilde{\varphi} G_{\mu \nu}^{A} & Q_{\varphi e} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{e}_{p} \gamma^{\mu} e_{r} ) \\
Q_{\varphi \widetilde{W}} & \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} & Q_{u W} & (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} & Q_{\varphi q}^{(1)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{q}_{p} \gamma^{\mu} q_{r} ) \\
Q_{\varphi B} & \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} & Q_{u B} & (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \widetilde{\varphi} B_{\mu \nu} & Q_{\varphi q}^{(3)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} ) \\
Q_{\varphi \tilde{B}} & \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} & Q_{d G} & (\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r} ) \varphi G_{\mu \nu}^{A} & Q_{\varphi u} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{u}_{p} \gamma^{\mu} u_{r} ) \\
Q_{\varphi W B} & \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} & Q_{d W} & (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} & Q_{\varphi d} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D}_{\mu} \varphi ) (\bar{d}_{p} \gamma^{\mu} d_{r} ) \\
Q_{\varphi \widetilde{W} B} & \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} & Q_{d B} & (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \varphi B_{\mu \nu} & Q_{\varphi u d} & i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi ) (\bar{u}_{p} \gamma^{\mu} d_{r} ) \\
\Xhline{1pt}
\end{array}
\]
\end{table}
\end{document}