当表格仅包含数学时,如何使表格更具可读性

当表格仅包含数学时,如何使表格更具可读性

我正在尝试制作表 2论文更具可读性。到目前为止,我的尝试总结在下面的代码中:

\documentclass[11pt]{article}
\usepackage{mathtools,amsmath,amssymb}
\usepackage{booktabs}
\usepackage{feynmp-auto}

\begin{document}
\begin{table}
    \centering
    \begin{tabular}{lc|lc|lc}\toprule 
      \multicolumn{2}{c|} {$X^{3}$} & \multicolumn{2}{c|} {$\varphi^{6}$ and
      $\varphi^{4} D^{2}$} & \multicolumn{2}{c} {$\psi^{2} \varphi^{3}$}
      \\
      \midrule
      $Q_{G}             $&$ f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}               $&$ Q_{\varphi}         $&$  (\varphi^{\dagger} \varphi )^{3}                                                            $&$ Q_{e \varphi} $&$  (\varphi^{\dagger} \varphi ) (\bar{l}_{p} e_{r} \varphi ) $\\
      $Q_{\widetilde{G}} $&$ f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}   $&$ Q_{\varphi \square} $&$  (\varphi^{\dagger} \varphi ) \square (\varphi^{\dagger} \varphi )                  $&$ Q_{u \varphi} $&$  (\varphi^{\dagger} \varphi ) (\bar{q}_{p} u_{r} \widetilde{\varphi} ) $\\
      $Q_{W}             $&$ \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}     $&$ Q_{\varphi D}       $&$  (\varphi^{\dagger} D^{\mu} \varphi )^{\star} (\varphi^{\dagger} D_{\mu} \varphi )  $&$ Q_{d \varphi} $&$  (\varphi^{\dagger} \varphi ) (\bar{q}_{p} d_{r} \varphi ) $\\
      $Q_{\widetilde{W}} $&$ \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} $& & & & \\
      \midrule 
      \multicolumn{2}{c|} {$X^{2} \varphi^{2}$} & \multicolumn{2}{c|} {$\psi^{2} X \varphi$}  & \multicolumn{2}{c} {$\psi^{2} \varphi^{2} D$} \\
      \midrule 
      $Q_{\varphi G}               $&$ \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}                     $&$ Q_{e W} $&$  (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I}              $&$ Q_{\varphi l}^{(1)} $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{l}_{p} \gamma^{\mu} l_{r} )               $\\
      $Q_{\varphi \widetilde{G}}   $&$ \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}         $&$ Q_{e B} $&$  (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \varphi B_{\mu \nu}                           $&$ Q_{\varphi l}^{(3)} $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}}  \varphi ) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r} ) $\\
      $Q_{\varphi W}               $&$ \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}                     $&$ Q_{u G} $&$  (\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r} ) \widetilde{\varphi} G_{\mu \nu}^{A}     $&$ Q_{\varphi e}       $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{e}_{p} \gamma^{\mu} e_{r} )               $\\
      $Q_{\varphi \widetilde{W}}   $&$ \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}         $&$ Q_{u W} $&$  (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}  $&$ Q_{\varphi q}^{(1)} $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{q}_{p} \gamma^{\mu} q_{r} )               $\\
      $Q_{\varphi B}               $&$ \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}                           $&$ Q_{u B} $&$  (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \widetilde{\varphi} B_{\mu \nu}               $&$ Q_{\varphi q}^{(3)} $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} )  $\\
      $Q_{\varphi \tilde{B}}       $&$ \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}               $&$ Q_{d G} $&$  (\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r} ) \varphi G_{\mu \nu}^{A}                 $&$ Q_{\varphi u}       $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{u}_{p} \gamma^{\mu} u_{r} )               $\\
      $Q_{\varphi W B}             $&$ \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}              $&$ Q_{d W} $&$  (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I}              $&$ Q_{\varphi d}       $&$  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D}_{\mu} \varphi ) (\bar{d}_{p} \gamma^{\mu} d_{r} )               $\\
      $Q_{\varphi \widetilde{W} B} $&$ \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}  $&$ Q_{d B} $&$  (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \varphi B_{\mu \nu}                           $&$ Q_{\varphi u d}     $&$ i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi ) (\bar{u}_{p} \gamma^{\mu} d_{r} )                                $\\
      \bottomrule
    \end{tabular}
  \end{table}

\end{document}

我认为这个版本已经比原来的版本好多了,因为它减少了表格中的垂直线数量,但不知何故,它的可读性似乎也降低了。有人能建议一些提高可读性的方法吗?

答案1

您可以先在显示的方程中使用数组环境来简化代码,然后使用geometry包来获得更合适的边距。此外,设置arraystretch为 2 会让它看起来不那么紧。

amsmath无关:如果您加载,则无需加载mathtools:后者会为您完成。

    \documentclass[11pt]{article}
    \usepackage{mathtools, amssymb}
    \usepackage{booktabs}
    \usepackage{geometry}

    \begin{document}

    \[
        \centering\renewcommand{\arraystretch}{2}
        \begin{array}{lc|lc|lc}\toprule
          \multicolumn{2}{c|} {X^{3}} & \multicolumn{2}{c|} {\varphi^{6}\text{ and }
          \varphi^{4} D^{2}} & \multicolumn{2}{c} {\psi^{2} \varphi^{3}}
          \\
          \midrule
          Q_{G} & f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} & Q_{\varphi} & (\varphi^{\dagger} \varphi )^{3} & Q_{e \varphi} & (\varphi^{\dagger} \varphi ) (\bar{l}_{p} e_{r} \varphi ) \\
          Q_{\widetilde{G}} & f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu} & Q_{\varphi \square} & (\varphi^{\dagger} \varphi ) \square (\varphi^{\dagger} \varphi ) & Q_{u \varphi} & (\varphi^{\dagger} \varphi ) (\bar{q}_{p} u_{r} \widetilde{\varphi} ) \\
          Q_{W} & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} & Q_{\varphi D} & (\varphi^{\dagger} D^{\mu} \varphi )^{\star} (\varphi^{\dagger} D_{\mu} \varphi ) & Q_{d \varphi} & (\varphi^{\dagger} \varphi ) (\bar{q}_{p} d_{r} \varphi ) \\
          Q_{\widetilde{W}} & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} & & & & \\
          \midrule
          \multicolumn{2}{c|} {X^{2} \varphi^{2}} & \multicolumn{2}{c|} {\psi^{2} X \varphi} & \multicolumn{2}{c} {\psi^{2} \varphi^{2} D} \\
          \midrule
          Q_{\varphi G} & \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu} & Q_{e W} & (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} & Q_{\varphi l}^{(1)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{l}_{p} \gamma^{\mu} l_{r} ) \\
          Q_{\varphi \widetilde{G}} & \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu} & Q_{e B} & (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \varphi B_{\mu \nu} & Q_{\varphi l}^{(3)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r} ) \\
          Q_{\varphi W} & \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu} & Q_{u G} & (\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r} ) \widetilde{\varphi} G_{\mu \nu}^{A} & Q_{\varphi e} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{e}_{p} \gamma^{\mu} e_{r} ) \\
          Q_{\varphi \widetilde{W}} & \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu} & Q_{u W} & (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I} & Q_{\varphi q}^{(1)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{q}_{p} \gamma^{\mu} q_{r} ) \\
          Q_{\varphi B} & \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu} & Q_{u B} & (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \widetilde{\varphi} B_{\mu \nu} & Q_{\varphi q}^{(3)} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} ) \\
          Q_{\varphi \tilde{B}} & \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu} & Q_{d G} & (\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r} ) \varphi G_{\mu \nu}^{A} & Q_{\varphi u} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{u}_{p} \gamma^{\mu} u_{r} ) \\
          Q_{\varphi W B} & \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu} & Q_{d W} & (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I} & Q_{\varphi d} & (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D}_{\mu} \varphi ) (\bar{d}_{p} \gamma^{\mu} d_{r} ) \\
          Q_{\varphi \widetilde{W} B} & \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu} & Q_{d B} & (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \varphi B_{\mu \nu} & Q_{\varphi u d} & i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi ) (\bar{u}_{p} \gamma^{\mu} d_{r} ) \\
          \bottomrule
        \end{array}
    \]

    \end{document}

在此处输入图片描述

答案2

我会使用array而不是tabular,通过包中定义的宏 \addgapedcells 添加更多空间makecell。对于水平线也会使用Xhline{<width>}

\documentclass[11pt]{article}
\usepackage{mathtools,amssymb}
\usepackage{makecell}

\begin{document}
\begin{table}
\setcellgapes{3pt}
\makegapedcells
    \[
\begin{array}{@{} lc|lc|lc @{}}
    \Xhline{1pt}
\multicolumn{2}{c|}{X^{3}} 
        & \multicolumn{2}{c|}{\varphi^{6} $ and $ \varphi^{4}D^{2}} 
                & \multicolumn{2}{c} {\psi^{2} \varphi^{3}}   \\
    \Xhline{0.5pt}
Q_{G}             & f^{A B C} G_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}               
            & Q_{\varphi}         &  (\varphi^{\dagger} \varphi )^{3}                                                            & Q_{e \varphi} &  (\varphi^{\dagger} \varphi ) (\bar{l}_{p} e_{r} \varphi ) \\
Q_{\widetilde{G}} & f^{A B C} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}   
            & Q_{\varphi \square} &  (\varphi^{\dagger} \varphi ) \square (\varphi^{\dagger} \varphi )                  & Q_{u \varphi} &  (\varphi^{\dagger} \varphi ) (\bar{q}_{p} u_{r} \widetilde{\varphi} ) \\
Q_{W}             & \varepsilon^{I J K} W_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu}     & Q_{\varphi D}       &  (\varphi^{\dagger} D^{\mu} \varphi )^{\star} (\varphi^{\dagger} D_{\mu} \varphi )  & Q_{d \varphi} &  (\varphi^{\dagger} \varphi ) (\bar{q}_{p} d_{r} \varphi ) \\
Q_{\widetilde{W}} & \varepsilon^{I J K} \widetilde{W}_{\mu}^{I \nu} W_{\nu}^{J \rho} W_{\rho}^{K \mu} 
            & & & & \\
    \Xhline{0.5pt}
\multicolumn{2}{c|} {X^{2}\varphi^{2}} 
        & \multicolumn{2}{c|} {\psi^{2} X \varphi}  
                & \multicolumn{2}{c} {\psi^{2} \varphi^{2}D}    \\
    \Xhline{0.5pt}
Q_{\varphi G}               & \varphi^{\dagger} \varphi G_{\mu \nu}^{A} G^{A \mu \nu}                     & Q_{e W} &  (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I}              & Q_{\varphi l}^{(1)} &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{l}_{p} \gamma^{\mu} l_{r} )               \\
Q_{\varphi \widetilde{G}}   & \varphi^{\dagger} \varphi \widetilde{G}_{\mu \nu}^{A} G^{A \mu \nu}         & Q_{e B} &  (\bar{l}_{p} \sigma^{\mu \nu} e_{r} ) \varphi B_{\mu \nu}                           & Q_{\varphi l}^{(3)} &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}}  \varphi ) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r} ) \\
Q_{\varphi W}               & \varphi^{\dagger} \varphi W_{\mu \nu}^{I} W^{I \mu \nu}                     & Q_{u G} &  (\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r} ) \widetilde{\varphi} G_{\mu \nu}^{A}     & Q_{\varphi e}       &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{e}_{p} \gamma^{\mu} e_{r} )               \\
Q_{\varphi \widetilde{W}}   & \varphi^{\dagger} \varphi \widetilde{W}_{\mu \nu}^{I} W^{I \mu \nu}         & Q_{u W} &  (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \tau^{I} \widetilde{\varphi} W_{\mu \nu}^{I}  & Q_{\varphi q}^{(1)} &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{q}_{p} \gamma^{\mu} q_{r} )               \\
Q_{\varphi B}               & \varphi^{\dagger} \varphi B_{\mu \nu} B^{\mu \nu}                           & Q_{u B} &  (\bar{q}_{p} \sigma^{\mu \nu} u_{r} ) \widetilde{\varphi} B_{\mu \nu}               & Q_{\varphi q}^{(3)} &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}^{I}} \varphi ) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r} )  \\
Q_{\varphi \tilde{B}}       & \varphi^{\dagger} \varphi \widetilde{B}_{\mu \nu} B^{\mu \nu}               & Q_{d G} &  (\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r} ) \varphi G_{\mu \nu}^{A}                 & Q_{\varphi u}       &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D_{\mu}} \varphi ) (\bar{u}_{p} \gamma^{\mu} u_{r} )               \\
Q_{\varphi W B}             & \varphi^{\dagger} \tau^{I} \varphi W_{\mu \nu}^{I} B^{\mu \nu}              & Q_{d W} &  (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \tau^{I} \varphi W_{\mu \nu}^{I}              & Q_{\varphi d}       &  (\varphi^{\dagger} i \stackrel{ \leftrightarrow}{D}_{\mu} \varphi ) (\bar{d}_{p} \gamma^{\mu} d_{r} )               \\
Q_{\varphi \widetilde{W} B} & \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}_{\mu \nu}^{I} B^{\mu \nu}  & Q_{d B} &  (\bar{q}_{p} \sigma^{\mu \nu} d_{r} ) \varphi B_{\mu \nu}                           & Q_{\varphi u d}     & i (\widetilde{\varphi}^{\dagger} D_{\mu} \varphi ) (\bar{u}_{p} \gamma^{\mu} d_{r} )                                \\
    \Xhline{1pt}
\end{array}
    \]
\end{table}
\end{document}

在此处输入图片描述

相关内容