在乳胶上定理框内收缩一条线

在乳胶上定理框内收缩一条线
\documentclass[8pts]{beamer} 
\usepackage{amsmath,amsrefs,amsthm}
\usepackage{amssymb}
\usepackage{graphics,graphicx}
\usetheme{Frankfurt}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usepackage{tkz-berge}
\usepackage{pgf, tikz}
\usepackage{ragged2e}

\usepackage{setspace}\usepackage{setspace}
\usepackage{pst-all}
\usepackage{pstricks}



\setbeamerfont{description}{size=\small}
\renewcommand{\baselinestretch}{1.3}
\def\B(G){\mathcal{T}_{\mathcal{B}_G}}
\def\w{{\sf w}}
\usetikzlibrary{arrows, automata}
\usetikzlibrary{decorations.markings}
\usetheme{Warsaw}
\useoutertheme{miniframes}
\usefonttheme{serif}
\usefonttheme{professionalfonts}
\mode<presentation>
\setbeamertemplate{footline}[frame number]


\begin{document}


\begin{frame}{Formula}\begin{footnotesize}
\begin{theorem}
    Let $U$ be a unicyclic $3$-colored digraph of order $n$ with a unique perfect matching. Then $U$ is invertible and if $A(U^{+})=(\alpha_{ij})$, then
    \begin{equation*}\label{EQAN}
        \alpha_{ij} = \begin{cases}
            \w_P(-1)^{\frac{|| P||-1}{2}} & \mbox{ if $U$ has unique $mm$-alternating $i-j$ path }\\
            
            \w_P(-1)^{\frac{||P||-1}{2}}+\w_Q(-1)^{\frac{||Q||-1}{2}} & \mbox{ if  $U$ have exactly two $mm$-alternating $i-j$ paths}\\
            0              & \mbox{ otherwise }.\\
            
        \end{cases}
    \end{equation*}
    Here $P$ and $Q$ are $mm$-alternating paths in $U$ between $i$ and $j$.  
\end{theorem}
\end{footnotesize}


\end{frame}
\end{document}

在此处输入图片描述

在我的代码中,这些线正在向外延伸。如何将其置于定理框内?

答案1

有以下可能性:

在此处输入图片描述

\documentclass[8pts]{beamer} 
\usepackage{amsmath,amsrefs,amsthm}
\usepackage{amssymb}
\usepackage{graphics,graphicx}
\usetheme{Frankfurt}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usepackage{tkz-berge}
\usepackage{pgf, tikz}
\usepackage{ragged2e}

\usepackage{setspace}\usepackage{setspace}
\usepackage{pst-all}
\usepackage{pstricks}



\setbeamerfont{description}{size=\small}
\renewcommand{\baselinestretch}{1.3}
\def\B(G){\mathcal{T}_{\mathcal{B}_G}}
\def\w{{\sf w}}
\usetikzlibrary{arrows, automata}
\usetikzlibrary{decorations.markings}
\usetheme{Warsaw}
\useoutertheme{miniframes}
\usefonttheme{serif}
\usefonttheme{professionalfonts}
\mode<presentation>
\setbeamertemplate{footline}[frame number]


\begin{document}


\begin{frame}{Formula}\begin{footnotesize}
\begin{theorem}
  Let $U$ be a unicyclic $3$-colored digraph of order $n$ with a
  unique perfect matching. Then $U$ is invertible and if
  $A(U^{+})=(\alpha_{ij})$, then
  \begin{equation*}\label{EQAN}
    \alpha_{ij} =
    \begin{cases}
      \w_P(-1)^{\frac{\|P\|-1}{2}} &
      \parbox[t]{0.45\textwidth}
      {if $U$ has a unique $mm$-alternating $i-j$ path }\\[6ex]
      \w_P(-1)^{\frac{\|P\|-1}{2}}+\w_Q(-1)^{\frac{\|Q\|-1}{2}} &
      \parbox[t]{0.45\textwidth}
      {if $U$ has exactly two $mm$-alternating $i-j$ paths}\\[6ex]
      0 &
      \parbox[t]{0.45\textwidth}
         {otherwise}.
    \end{cases}
  \end{equation*}
  Here $P$ and $Q$ are $mm$-alternating paths in $U$ between $i$
  and $j$.
\end{theorem}
\end{footnotesize}
\end{frame}
\end{document}

相关内容