IEETran 上 itemize 的 Latex 对齐

IEETran 上 itemize 的 Latex 对齐

我利用 itemize 环境创建带有 IEEE 交易的符号项列表。但是,itemize 环境的边界违规让我很烦恼。有人能帮我修复它吗?编辑链接如下。

https://www.overleaf.com/9987448856nmfypzfntrgh

谨致问候, Bruno Peixoto

答案1

放在\def\IEEElabelindentfactori{4.3}之前 \begin{document}

之后 \raggedright\begin{itemize}

如果冒号:位于括号内,对齐效果会更好[...]

喜欢\item [$\exists a$ :] exists $a$;

A

d

\title{Your Paper}
\author{You}

\def\IEEElabelindentfactori{4.3} % added <<<<<<<<<<<<   

\begin{document}
\maketitle  

\begin{itemize}
\raggedright % added <<<<<<<<<<<<   
\item [$\mathbb{R}$ :] real number set;
\item [$\mathbb{F}^r_{p \times q}(\mathbb{R}^n)$ :] $p \times q$ matrix space of functions derivable until $r^{\text{th}}$-order;
\item [$\mathcal{I}_n$ :] ordered numbered set $\{1, \, \cdots, \, n\}$; 
\item [$\exists a$ :] exists $a$;
\item [$\forall a$ :] for all $a$;
\item [$\rank{(\cdot)}$ :] rank;
\item [$\ker{(\cdot)}$ :] kernel;
\item [$\det{(\cdot)}$ :] determinant;
\item [$\inv{A}$ :] inverse matrix i.e. $\inv{A} \, A = I$ and $A \, \inv{A} = I$;
\item [$\adj{(A)}$ :] adjoint matrix i.e. $\adj{(A)} = \det(A) \, \inv{A}$;
\item [$\numerator(\cdot)$ :] numerator;
\item [$\denominator(\cdot)$ :] denominator;
\item [$A_{m, n}$ :] matrix of $m$ rows and $n$ columns;
\item [$A^{\intercal}$ :] transpose matrix i.e. $\{b_{ij}\}_{i, \, j \in \mathcal{I}_m}$ $\!=\!$ $\{a_{ji}\}_{i, \, j \in \mathcal{I}_m}$;
\item [$\dot{a}$ :] time derivative of $a$;
\item [$\hat{a}$ :] estimation of $a$;
\item [$\tilde{a}$ :] error between $a$ and desired value $a^{\star}$;
\item [$\abs{\cdot}$ :] absolute value;
\item [$\begin{pmatrix} n\\m \end{pmatrix}$ :] binomial coefficients $\frac{n!}{m! \cdot (n-m)!}$;
\item [$\inv{f}(x)$ :] Inverse function i.e. $f(\inv{f}(x)) = x$;
\item [$\mathcal{L}_a b$ :] Lie derivative of distribution $b$ respective to vector field $a$;
\item [$\inf_{\mathcal{X}} (\cdot)$ :] infimum function on space $\mathcal{X}$;
\item [$\sup_{\mathcal{X}} (\cdot)$ :] supremum function on space $\mathcal{X}$;
\item [$\min_{\mathcal{X}} (\cdot)$ :] minimum value on space $\mathcal{X}$;
\item [$\max_{\mathcal{X}} (\cdot)$ :] maximum value on space $\mathcal{X}$;
\item [$\sgn{(\cdot)}$ :] sign function. On this article, 1 to non-negative numbers and -1 otherwise.
\item [$\mathcal{A}$ :] space of variable $a$;
\item [$\mathscr{A}$ :] compact set;
\end{itemize}

\section{Some examples to get started}

相关内容