我使用subequations
和align
环境如下:
\begin{subequations}
\begin{align}
\sum_{a \in \delta^+_G(v)} f^k_a - \sum_{a \in \delta^-_G(v)} f^k_a &= d^k_v, & \forall v \in V, k \in K \\
\sum_{k \in K} f^k_a &\le \sum_{m \in M}c^m x^m_a, & \forall a \in A & \quad \texttt{Directed}\\
\max \left\{\sum_{k \in K} \{f^k_{e+},f^k_{e-}\} \right\}&\le \sum_{m \in M}c^m x^m_a, & \forall e \in E & \quad \texttt{Bidirected}\\
\sum_{k \in K} (f^k_{e+}+f^k_{e-})&\le \sum_{m \in M}c^m x^m_e, & \forall e \in E & \quad \texttt{Undirected}
\end{align}
\end{subequations}
显示方程式编号为
1.a
1.b
1.c
1.d
但是,我希望编号显示为
1
2.a
2.b
2.c
答案1
我建议你 (a) 将所有四个语句嵌入到gather
环境中,以及 (b) 嵌入三个不平等在组合subequations
和alignat
环境中。我还建议使用\smashoperator
指令,以便更紧凑地排版第一行中的求和表达式。
\documentclass{article}
\usepackage{mathtools} % for \smashoperator macro
\begin{document}
\begin{gather}
\smashoperator{\sum_{a \in \delta^+_G(v)}} f^k_a -
\smashoperator{\sum_{a \in \delta^-_G(v)}} f^k_a =
d^k_v, \quad \forall v \in V,\ k \in K
\\[\jot]
\begin{subequations}
\begin{alignat}{3}
\sum_{k \in K} f^k_a
&\le \sum_{m \in M}c^m x^m_a,
&\qquad& \forall a \in A
& \quad& \texttt{Directed} \\
\max \biggl\{\sum_{k \in K} \{f^k_{e+},f^k_{e-}\} \biggr\}
&\le \sum_{m \in M}c^m x^m_a,
&& \forall e \in E
&& \texttt{Bidirected} \\
\sum_{k \in K} (f^k_{e+}+f^k_{e-})
&\le \sum_{m \in M}c^m x^m_e,
&& \forall e \in E
&& \texttt{Undirected}
\end{alignat}
\end{subequations}
\end{gather}
\end{document}
答案2
在我写这篇文章的时候,Mico 刚刚发布了他的答案,你应该考虑一下,但要直接回答这个问题,align
我可能不会使用subequations
,而只是标记后面的方程式,所以
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
\sum_{a \in \delta^+_G(v)} f^k_a - \sum_{a \in \delta^-_G(v)} f^k_a &= d^k_v, & \forall v \in V, k \in K \\
\sum_{k \in K} f^k_a &\le \sum_{m \in M}c^m x^m_a, & \forall a \in A & \quad \texttt{Directed} \refstepcounter{equation}\tag{\theequation a}\\
\max \left\{\sum_{k \in K} \{f^k_{e+},f^k_{e-}\} \right\}&\le \sum_{m \in M}c^m x^m_a, & \forall e \in E & \quad \texttt{Bidirected} \tag{\theequation b}\\
\sum_{k \in K} (f^k_{e+}+f^k_{e-})&\le \sum_{m \in M}c^m x^m_e, & \forall e \in E & \quad \texttt{Undirected} \tag{\theequation c}
\end{align}
\end{document}
答案3
您可以定义一个新specialsubequations
环境,其中第一个项目在 的帮助下得到特殊处理\specialequation
。
\documentclass{article}
\usepackage{amsmath}
%\usepackage{hyperref} % not mandatory
\usepackage{lipsum} % for mock text, don't load it in your document
\makeatletter
\newcounter{specialsubequations}
\newenvironment{specialsubequations}
{%
\stepcounter{specialsubequations}%
\stepcounter{equation}%
\let\@currentlabel\theequation
\label{@@@fake\thespecialsubequations @@@}%
\subequations
}
{\endsubequations}
\@ifpackageloaded{hyperref}{%
\newcommand{\specialequation}{\tag{\ref*{@@@fake\thespecialsubequations @@@}}}%
}{%
\newcommand{\specialequation}{\tag{\ref{@@@fake\thespecialsubequations @@@}}}%
}
\makeatother
\begin{document}
\lipsum[1][1-3]
\begin{specialsubequations}
\begin{align}
\sum_{a \in \delta^+_G(v)} f^k_a - \sum_{a \in \delta^-_G(v)} f^k_a
&= d^k_v, & \forall v \in V, k \in K \specialequation\label{1}
\\
\sum_{k \in K} f^k_a &\le \sum_{m \in M}c^m x^m_a,
& \forall a \in A & \quad \texttt{Directed}
\\
\max \left\{\sum_{k \in K} \{f^k_{e+},f^k_{e-}\} \right\}
&\le \sum_{m \in M}c^m x^m_a, & \forall e \in E & \quad \texttt{Bidirected}
\\
\sum_{k \in K} (f^k_{e+}+f^k_{e-})&\le \sum_{m \in M}c^m x^m_e,
& \forall e \in E & \quad \texttt{Undirected}
\end{align}
\end{specialsubequations}
\lipsum[2][1-3]
\end{document}
您可以将 添加\label
到特殊方程式中;hyperref
加载后链接将起作用。
但我建议不要更改该号码。
\documentclass{article}
\usepackage{amsmath}
%\usepackage{hyperref} % not mandatory; use `\ref*` if hyperref is loaded
\usepackage{lipsum} % for mock text
\begin{document}
\lipsum[1][1-3]
\begin{subequations}\label{main}
\begin{align}
\sum_{a \in \delta^+_G(v)} f^k_a - \sum_{a \in \delta^-_G(v)} f^k_a
&= d^k_v, & \forall v \in V, k \in K \tag{\ref{main}}
\\
\sum_{k \in K} f^k_a &\le \sum_{m \in M}c^m x^m_a,
& \forall a \in A & \quad \texttt{Directed}
\\
\max \left\{\sum_{k \in K} \{f^k_{e+},f^k_{e-}\} \right\}
&\le \sum_{m \in M}c^m x^m_a, & \forall e \in E & \quad \texttt{Bidirected}
\\
\sum_{k \in K} (f^k_{e+}+f^k_{e-})&\le \sum_{m \in M}c^m x^m_e,
& \forall e \in E & \quad \texttt{Undirected}
\end{align}
\end{subequations}
\lipsum[2][1-3]
\end{document}