使用\usepackage{xfp}
,我创建了以下命令:
\newcommand{\ppdv}[5]{\dfrac{\partial^{\fpeval{#3 + #5}} #1}{\partial {#2}^{#3} \partial {#4}^{#5}}}
例如,如果我输入:\ppdv{f}{x}{2}{y}{3}
我将得到:\dfrac{\partial^5 f}{\partial x^2 \partial y^3}
我有两个问题:
如果我写\ppdv{f}{x}{2}{y}{}
,意味着我只想取变量 y 的一阶导数(我不想写数字 1),
我不会得到:\dfrac{\partial^3 f}{\partial x^2 \partial y}
如果我写\ppdv{f}{x}{n}{y}{4}
,意味着我想计算变量 x 的 n 阶导数,
我不会得到:\dfrac{\partial^{n+4} f}{\partial x^2 \partial y}
Tex 不使用 xfp 包编译这些任务。有办法解决这个问题吗?无论如何,我不会费心将 xfp 包换成另一个包。
另外,如果我写,例如,\ppdv{f}{x}{2}{y}{m}
意味着我想计算变量 y 的 m 阶导数,
如果可能的话,我希望得到:\dfrac{\partial^{m+2} f}{\partial x^2 \partial y}
其中未知字母 m 是总和中第一个出现的字母。
如果有人知道如何解决这个问题,我将不胜感激。
答案1
以下是一种方法:
代码:
\documentclass{article}
\usepackage{mathtools}
\usepackage{xfp}
%\usepackage{pgfmath}
\usepackage{xstring}
\makeatletter
\def\@IntergerSum{0}%
\def\@NonIntergerSum{}%
\newcommand{\@GetSumAux}[1]{%
\IfStrEq{#1}{}{%
%% Ignore if this is empty
}{%
\IfInteger{#1}{%
%\pgfmathtruncatemacro\@IntergerSum{\@IntergerSum + #1}% pgfmath version
\edef\@IntergerSum{\fpeval{\@IntergerSum + #1}}% xfp version
}{%
\IfStrEq{\@NonIntergerSum}{}{%
\g@addto@macro\@NonIntergerSum{#1}%
}{%
\g@addto@macro\@NonIntergerSum{+ #1}%
}%
}%
}%
}%
\newcommand{\@GetSum}[5]{%
%% If inputs are integers their values are summed, otherwise we return
%% an expression for the sum. Thus, if the last four parameters are
%%
%% {1}{2}{3}{4} = 10
%% {1}{2}{3}{n} = n + 6
%% {1}{m}{3}{n} = m + n + 4
%%
%% #1 = macro to set
%% #2 = parameter
%% #3 = parameter
%% #4 = parameter
%% #5 = parameter
%% -------------
\gdef\@IntergerSum{0}%
\gdef\@NonIntergerSum{}%
%% ----------
\@GetSumAux{#2}%
\@GetSumAux{#3}%
\@GetSumAux{#4}%
\@GetSumAux{#5}%
\IfStrEq{\@NonIntergerSum}{}{%
%\edef#1{\@IntergerSum}%
\@GetExponent{#1}{\@IntergerSum}%
}{%
\IfStrEq{\@IntergerSum}{0}{%
\edef#1{^{\@NonIntergerSum}}%
}{%
\edef#1{^{\@NonIntergerSum + \@IntergerSum}}%
}%
}%
}%
\newcommand{\@GetExponent}[2]{%
%% hides exponent of 1
%% #1 = macro to set
%% #2 = value
\IfStrEq{#2}{}{%
\def#1{}%%% No exponent if this is empty
}{%
\IfStrEq{#2}{1}{%
\def#1{}% Suppress exponent of 1
}{%
\def#1{^{#2}}%
}%
}%
}%
\newcommand{\@ShowVar}[2]{%
%% #1 = variable
%5 #2 = exponenet
\IfStrEq{#1}{}{}{\partial#1#2}% %% If no var given, we skip this variable
}%
\newcommand*{\@SumExponenet}{}%
\newcommand{\@PPDV}[9]{%
\begingroup
\@GetSum{\@SumExponenet}{#3}{#5}{#7}{#9}%
%% ----------
\@GetExponent{\@ExponenentV}{#3}%
\@GetExponent{\@ExponenentX}{#5}%
\@GetExponent{\@ExponenentY}{#7}%
\@GetExponent{\@ExponenentZ}{#9}%
%% ----------
\dfrac
{\partial\@SumExponenet#1}
{
\@ShowVar{#2}{\@ExponenentV}%
\@ShowVar{#4}{\@ExponenentX}%
\@ShowVar{#6}{\@ExponenentY}%
\@ShowVar{#8}{\@ExponenentZ}%
}%
\endgroup
}
\newcommand{\pdv}[3]{\@PPDV{#1}{#2}{#3}{}{}{}{}{}{}}
\newcommand{\ppdv}[5]{\@PPDV{#1}{#2}{#3}{#4}{#5}{}{}{}{}}
\newcommand{\pppdv}[7]{\@PPDV{#1}{#2}{#3}{#4}{#5}{#6}{#7}{}{}}%
\newcommand{\ppppdv}[9]{\@PPDV{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}}%
\makeatother
\begin{document}
\begin{gather*}
\ppdv{f}{x}{1}{y}{1}% test exponent of 1
\;
\ppdv{f}{x}{2}{y}{3}% all numerical not 1
\;
\ppdv{f}{x}{n}{y}{4}% first non-numerical
\;
\ppdv{f}{x}{2}{y}{m}% second nun-numerical (desired output "m+2", not "2+m")
\;
\ppdv{f}{x}{n}{y}{m}% bot non numerical
\\[2.0ex]
\pppdv{f}{x}{1}{y}{1}{z}{1}% test exponent of 1
\;
\pppdv{f}{x}{2}{y}{3}{z}{4}% all numerical not 1
\;
\pppdv{f}{x}{m}{y}{1}{z}{2}% first non-numerical
\;
\pppdv{f}{x}{1}{y}{n}{z}{3}% second non-numerical
\\[0.5ex]
\pppdv{f}{x}{1}{y}{2}{z}{p}% third non-numerical
\;
\pppdv{f}{x}{m}{y}{2}{z}{p}% first & third non-numerical
\;
\pppdv{f}{x}{2}{y}{m}{z}{p}% second & third non-numerical
\\[2.0ex]
\ppppdv{f}{u}{1}{x}{1}{y}{1}{z}{1}% test exponent of 1
\;
\ppppdv{f}{u}{1}{x}{n}{y}{m}{z}{1}% second and third exponent of 1
\;
\ppppdv{f}{u}{m}{x}{n}{y}{p}{z}{r}% all non-numerical
\end{gather*}
\end{document}
答案2
我建议直接使用derivative
包,它具有适合您口味的特定宏。
\documentclass[a4paper,12pt]{article}
\usepackage{derivative}
\begin{document}
$\pdv[sort-numerical=last, order={-n,2}]{f}{x,y}$
\end{document}
https://ctan.mirror.garr.it/mirrors/ctan/macros/latex/contrib/derivative/derivative.pdf