当枚举列表超过两页时,如何解决对齐问题?

当枚举列表超过两页时,如何解决对齐问题?
\begin{enumerate}
    \item Assuming \( \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a\) , proof \( \lim_{n \to \infty} \sqrt[n]{a_n} = a\).
    \par \emph{Hint:}
      \( \lim_{n \to \infty} a_n = a  \Rightarrow  \lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{1/n} = a\)

    \item Proof \( \lim_{n \to \infty} \frac{1}{n}(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}) = 0\).
    \par \emph{Hint:}
      \( \lim_{n \to \infty} a_n = a  \Rightarrow  \lim_{n \to \infty} (a_1 + a_2 +\cdots+ a_n) = a\)
      
    \item Let \(p(n)\) be the number of prime factors of n, proof \( \lim_{n \to \infty} \frac{p(n)}{n} = 0\).
    \par 
    \emph{Proof:} \[n = p_1^{s_1} p_2^{s_2} \cdots p_m^{s_m}, \quad m=p(n)\]
    \[m<s_1+s_2+s_3+\cdots+s_m\]
    
    Since 2 is the smallest prime number,
    \[2^{s_1+s_2+s_3+\cdots+s_m}<n\]
    thus,
    \[ s_1+s_2+s_3+\cdots+s_m<\frac{\ln{n}}{\ln{2}} \]
    \[ \frac{p(n)}{n} < \frac{\ln{n}}{n \ln{2}} \]
    \item
\end{enumerate}

谢谢你解决我下面这个问题! 谢谢!

相关内容