这是 latex Overleaf,我收到此错误,但不知道该如何修复
编辑:这是代码
\begin{definition}[Dirichlet Character]
Any map $\chi:(\mathbb{Z}/n\mathbb{Z})* \rightarrow \mathbb{C}$ is said to be a Dirichlet Character of modulus $n$ if for any two integers $a$ and $b$,
\begin{itemize}
\item $\chi(ab) = \chi(a)\chi(b) \hspace{2pt} \text{(multiplicity)}$
\item $\chi(a)$ = $\begin{cases}
$0$ & \text{if } $\gcd(a,n) > 1$ \\
\text{non-zero} & \text{if }$\gcd(a,n) = 1$ \\
\end{cases}$ \item $\chi(a+m)$ = $\chi(a)$ \text{(periodic with period $m$)}
\end{itemize}
\end{definition}
答案1
这是有效的,因为每个方程式都在一个数学环境中(参见@DavidCarlisle 评论):
\documentclass{article}
\usepackage{amsmath, amssymb, amsthm}
\theoremstyle{definition} % for upright text in definition
\newtheorem{definition}{Definition}
\begin{document}
\begin{definition}[Dirichlet Character]
Any map $\chi:(\mathbb{Z}/n\mathbb{Z})* \rightarrow \mathbb{C}$ is said to be a Dirichlet Character of modulus $n$ if for any two integers $a$ and $b$,
\begin{itemize}
\item $\chi(ab) = \chi(a)\chi(b)$ \quad(multiplicity)
\item $\chi(a) = \begin{cases}
0 & \text{if } \gcd(a,n) > 1 \\
\ne 0 & \text{if } \gcd(a,n) = 1 \\
\end{cases}$
\item $\chi(a+m) = \chi(a)$ \quad(periodic with period $m$)
\end{itemize}
\end{definition}
\end{document}
編輯: 考虑了@Mico 的评论。