我正在尝试在对齐环境内包含几个拆分环境,我想知道是否有任何方法可以将拆分环境内的方程与它们外部的方程对齐?
\begin{align}
y_{1}^{'} &= -\mu x^{\lambda - 1}sin(\mu \ln(x))+ x^{\lambda - 1} cos(\mu \ln(x))\\
y_{2}^{'} &= \mu x^{\lambda - 1}cos(\mu \ln(x))+ x^{\lambda - 1} sin(\mu \ln(x)) \\
\begin{split}
W(y_{1},y_{2}) &= (\mu x^{2\lambda - 1} cos^{2}(\mu \ln(x)) + x^{2\lambda -1} sin(\mu
\ln(x))cos(\mu \ln(x))) \\
& - (-\mu x^{2\lambda - 1}sin^{2}(\mu \ln(x))+x^{2\lambda - 1}cos(\mu \ln(x))sin(\mu \ln(x))) \\
\end{split}\\
\begin{split}
W(y_{1},y_{2}) &= x^{2\lambda - 1}[(\mu cos^{2}(\mu \ln(x)) + sin(\mu \ln(x))cos(\mu \ln(x))) \\
& - (-\mu sin^{2}(\mu \ln(x))+cos(\mu \ln(x))sin(\mu \ln(x)))] \\
\end{split}\\
\begin{split}
W(y_{1},y_{2}) &= x^{2\lambda - 1}[\mu cos^{2}(\mu \ln(x)) + sin(\mu \ln(x))cos(\mu \ln(x)) \\
& + \mu sin^{2}(\mu \ln(x)) - cos(\mu \ln(x))sin(\mu \ln(x)))] \\
\end{split}\\
W(y_{1},y_{2}) &= x^{2\lambda - 1} [\mu sin^{2}(\mu \ln(x)) + \mu cos^{2}(\mu \ln(x))]\\
W(y_{1},y_{2}) &= x^{2\lambda - 1} [\mu (sin^{2}(\mu \ln(x)) + cos^{2}(\mu \ln(x)))]\\
W(y_{1},y_{2}) &= \mu x^{2\lambda - 1}
\end{align}
答案1
无需在环境split
中嵌入环境align
。只需一个align
环境以及合理放置的\notag
说明\quad
即可完成格式化工作。
请注意,我还分别将 (a) 的两个实例替换^{'}
为'
和 (b) 和 的所有实例替换为sin
和。此外,无需在等式 (4) 至 (8) 的左侧重复。cos
\sin
\cos
W(y_{1},y_{2})
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
y_{1}' &= -\mu x^{\lambda-1}\sin(\mu \ln(x))+ x^{\lambda-1} \cos(\mu \ln(x))\\
y_{2}' &= \mu x^{\lambda-1}\cos(\mu \ln(x))+ x^{\lambda-1} \sin(\mu \ln(x)) \\
W(y_{1},y_{2})
&= (\mu x^{2\lambda-1} \cos^{2}(\mu \ln(x)) + x^{2\lambda-1} \sin(\mu \ln(x))\cos(\mu \ln(x))) \notag\\
&\quad- (-\mu x^{2\lambda-1}\sin^{2}(\mu \ln(x))+x^{2\lambda-1}\cos(\mu \ln(x))\sin(\mu \ln(x))) \\
%W(y_{1},y_{2})
&= x^{2\lambda-1}[(\mu \cos^{2}(\mu \ln(x)) + \sin(\mu \ln(x))\cos(\mu \ln(x))) \notag \\
&\quad-(-\mu \sin^{2}(\mu \ln(x))+cos(\mu \ln(x))\sin(\mu \ln(x)))]\\
%W(y_{1},y_{2})
&= x^{2\lambda-1}[\mu \cos^{2}(\mu \ln(x)) + \sin(\mu \ln(x))\cos(\mu \ln(x)) \notag\\
&\quad + \mu \sin^{2}(\mu \ln(x))-\cos(\mu \ln(x))\sin(\mu \ln(x)))] \\
%W(y_{1},y_{2})
&= x^{2\lambda-1} [\mu \sin^{2}(\mu \ln(x)) + \mu \cos^{2}(\mu \ln(x))]\\
%W(y_{1},y_{2})
&= x^{2\lambda-1} [\mu (\sin^{2}(\mu \ln(x)) + \cos^{2}(\mu \ln(x)))]\\
%W(y_{1},y_{2})
&= \mu x^{2\lambda-1} \,.
\end{align}
\end{document}
答案2
\\
在amsmath
对齐环境中切勿出现尾随。
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
y_{1}' &= -\mu x^{\lambda - 1}\sin(\mu \ln(x))+ x^{\lambda - 1} \cos(\mu \ln(x))\\
y_{2}' &= \mu x^{\lambda - 1}\cos(\mu \ln(x))+ x^{\lambda - 1} \sin(\mu \ln(x)) \\
\begin{split}
W(y_{1},y_{2}) &= (\mu x^{2\lambda - 1} \cos^{2}(\mu \ln(x)) + x^{2\lambda -1} \sin(\mu
\ln(x))\cos(\mu \ln(x))) \\
& - (-\mu x^{2\lambda - 1}\sin^{2}(\mu \ln(x))+x^{2\lambda - 1}\cos(\mu \ln(x))\sin(\mu \ln(x)))
\end{split}\\
\begin{split}
W(y_{1},y_{2}) &= x^{2\lambda - 1}[(\mu \cos^{2}(\mu \ln(x)) + \sin(\mu \ln(x))\cos(\mu \ln(x))) \\
& - (-\mu \sin^{2}(\mu \ln(x))+\cos(\mu \ln(x))\sin(\mu \ln(x)))]
\end{split}\\
\begin{split}
W(y_{1},y_{2}) &= x^{2\lambda - 1}[\mu \cos^{2}(\mu \ln(x)) + \sin(\mu \ln(x))\cos(\mu \ln(x)) \\
& + \mu \sin^{2}(\mu \ln(x)) - \cos(\mu \ln(x))\sin(\mu \ln(x)))]
\end{split}\\
W(y_{1},y_{2}) &= x^{2\lambda - 1} [\mu \sin^{2}(\mu \ln(x)) + \mu \cos^{2}(\mu \ln(x))]\\
W(y_{1},y_{2}) &= x^{2\lambda - 1} [\mu (\sin^{2}(\mu \ln(x)) + \cos^{2}(\mu \ln(x)))]\\
W(y_{1},y_{2}) &= \mu x^{2\lambda - 1}
\end{align}
\end{document}
我固定一切sin
和cos
为\sin
和\cos
;也^{'}
应该是公正的'
。
答案3
split
总是与外部对齐对齐,但虚假的尾随\\
使其混淆
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
y_{1}' &= -\mu x^{\lambda - 1}\sin(\mu \ln(x))+ x^{\lambda - 1} \cos(\mu \ln(x))\\
y_{2}' &= \mu x^{\lambda - 1}\cos(\mu \ln(x))+ x^{\lambda - 1} \sin(\mu \ln(x)) \\
\begin{split}
W(y_{1},y_{2}) &= (\mu x^{2\lambda - 1} \cos^{2}(\mu \ln(x)) + x^{2\lambda -1} \sin(\mu
\ln(x))\cos(\mu \ln(x))) \\
& - (-\mu x^{2\lambda - 1}\sin^{2}(\mu \ln(x))+x^{2\lambda - 1}\cos(\mu \ln(x))\sin(\mu \ln(x)))
\end{split}\\
\begin{split}
W(y_{1},y_{2}) &= x^{2\lambda - 1}[(\mu \cos^{2}(\mu \ln(x)) + \sin(\mu \ln(x))\cos(\mu \ln(x))) \\
& - (-\mu \sin^{2}(\mu \ln(x))+\cos(\mu \ln(x))\sin(\mu \ln(x)))]
\end{split}\\
\begin{split}
W(y_{1},y_{2}) &= x^{2\lambda - 1}[\mu \cos^{2}(\mu \ln(x)) + \sin(\mu \ln(x))\cos(\mu \ln(x)) \\
& + \mu \sin^{2}(\mu \ln(x)) - \cos(\mu \ln(x))\sin(\mu \ln(x)))]
\end{split}\\
W(y_{1},y_{2}) &= x^{2\lambda - 1} [\mu \sin^{2}(\mu \ln(x)) + \mu \cos^{2}(\mu \ln(x))]\\
W(y_{1},y_{2}) &= x^{2\lambda - 1} [\mu (\sin^{2}(\mu \ln(x)) + \cos^{2}(\mu \ln(x)))]\\
W(y_{1},y_{2}) &= \mu x^{2\lambda - 1}
\end{align}
\end{document}