考虑以下 MWE:
\documentclass[12pt, a4paper]{report}
\usepackage{amsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs,amsmath}
\begin{document}
\begin{align}
S_2^* &= \frac{(\gamma_A + \sigma+\mu)(\gamma_I+\eta+\alpha+\mu)}{\beta_A(\gamma_I+\eta+\alpha+\mu)+\sigma \beta_I}\\[1ex]
A_2^* &= \frac{\gamma_I+\eta+\alpha+\mu}{\sigma}I_2^*\\[1ex]
I_2^* &= \frac{\mu \sigma (\gamma_A+\mu +\sigma ) (\mu +\xi +\rho ) (\alpha +\gamma_I+\eta +\mu )}{\beta_A (\alpha +\gamma_I+\eta +\mu )+\beta_I \sigma ) (\mu (\gamma_A+\mu +\xi ) (\alpha +\gamma_I+\eta +\mu )+\alpha \sigma (\mu +\xi )+\mu \sigma (\gamma_I+\eta +\mu +\xi ))}(\mathcal{R}_0 -1)\\[1ex]
R_2^* &= \frac{\gamma_A(\gamma_I + \eta+\alpha+\nu)I_2^*+\sigma(I_2^*(\gamma_I+\eta)+b\nu+\rho S_2^*)}{\sigma(\mu+\rho)}
\end{align}
\end{document}
我们发现 $I_2^*$ 的表达式不适合该页面,那么解决这个问题的理想方法是什么?
答案1
您可以使用matrix
环境将方程 (3) 中非常长的分母项分成三行。
\documentclass[12pt, a4paper]{report}
\usepackage{amsmath,amssymb} % I've simplified the preamble as much as possible
\begin{document}
\begingroup % localize scope of next instruction:
\addtolength\jot{1ex} % increase spacing beween rows
\begin{align}
S_2^* &= \frac{(\gamma_A + \sigma+\mu)(\gamma_I+\eta+\alpha+\mu)}{\beta_A(\gamma_I+\eta+\alpha+\mu)+\sigma \beta_I}\\
A_2^* &= \frac{\gamma_I+\eta+\alpha+\mu}{\sigma}I_2^*\\
I_2^* &= \frac{\mu \sigma (\gamma_A+\mu +\sigma) (\mu +\xi +\rho) (\alpha +\gamma_I+\eta +\mu)}{%
\left(%
\begin{matrix}
\beta_A (\alpha +\gamma_I+\eta +\mu) \hfill \\
{}+\beta_I \sigma \bigl[\mu (\gamma_A+\mu +\xi) (\alpha +\gamma_I+\eta +\mu)\\
\hfill {}+\alpha \sigma (\mu +\xi)+\mu \sigma (\gamma_I+\eta +\mu +\xi)\bigr]
\end{matrix}
\right)}(\mathcal{R}_0 -1)\\
R_2^* &= \frac{\gamma_A(\gamma_I + \eta+\alpha+\nu)I_2^*
+\sigma[I_2^*(\gamma_I+\eta)+b\nu+\rho S_2^*]}{\sigma(\mu+\rho)}
\end{align}
\endgroup
\end{document}
答案2
这是一种将变量分别分配给分子和分母,然后写$I_2^*$
为它们的比率的方法。
\documentclass[12pt, a4paper]{report}
\usepackage{amsmath}
\begin{document}
\begin{align}
S_2^* &= \frac{(\gamma_A + \sigma+\mu)(\gamma_I+\eta+\alpha+\mu)}{\beta_A(\gamma_I+\eta+\alpha+\mu)+\sigma \beta_I}\\[1ex]
A_2^* &= \frac{\gamma_I+\eta+\alpha+\mu}{\sigma}I_2^*\\[1ex]
I_{2,1}^* &= \mu \sigma (\gamma_A+\mu +\sigma ) (\mu +\xi +\rho ) (\alpha +\gamma_I+\eta +\mu )\\
I_{2,2}^* &= \beta_A (\alpha +\gamma_I+\eta +\mu )+\beta_I \sigma (\mu (\gamma_A+\mu +\xi ) (\alpha +\gamma_I+\eta +\mu )\nonumber\\
&\quad +\alpha \sigma (\mu +\xi )+\mu \sigma (\gamma_I+\eta +\mu +\xi )) \\
I_2^* &= \frac{I_{2,1}^*}{I_{2,2}^*}(\mathcal{R}_0 -1)\\[1ex]
R_2^* &= \frac{\gamma_A(\gamma_I + \eta+\alpha+\nu)I_2^*+\sigma(I_2^*(\gamma_I+\eta)+b\nu+\rho S_2^*)}{\sigma(\mu+\rho)}
\end{align}
\end{document}
答案3
我将定义一个辅助变量,设为,A = \gamma_I + \eta + \alpha + \mu
并将您的方程写为:
\documentclass[12pt, a4paper]{report}
\usepackage{mathtools, amssymb, amsthm, mathrsfs}
\begin{document}
Let be $A$ defined as
\begin{spreadlines}{2ex}
\begin{align}
A & = \gamma_I + \eta + \alpha + \mu
\shortintertext{and}
S_2^*
& = \frac{(\gamma_A + \sigma + \mu)A}{\beta_A A + \sigma \beta_I} \\
I_2^* &= \frac{\mu \sigma (\gamma_A + \mu + \sigma )(\mu + \xi + \rho)A(\mathcal{R}_0 -1)}
{(\beta_A A + \beta_I\sigma)(\mu(\gamma_A+\mu +\xi)A + \alpha\sigma(\mu +\xi )+\mu \sigma (\gamma_I+\eta +\mu +\xi))} \\
\intertext{then}
A_2^*
& = \frac{A}{\sigma}I_2^* \\
R_2^*
& = \frac{\gamma_A(\gamma_I + \eta+\alpha+\nu)I_2^* + \sigma(I_2^*(\gamma_I+\eta)+b\nu+\rho S_2^*)}{\sigma(\mu+\rho)}
\end{align}
\end{spreadlines}
\end{document}
答案4
我将以这种方式使用\splitfrac
命令mathtools
(以加载amsmath
):
\documentclass[12pt, a4paper]{report}
\usepackage{graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs,mathtools}
\usepackage{showframe}
\begin{document}
\begin{align}
S_2^* &= \frac{(\gamma_A + \sigma+\mu)(\gamma_I+\eta+\alpha+\mu)}{\beta_A(\gamma_I+\eta+\alpha+\mu)+\sigma \beta_I}\\[1ex]
A_2^* &= \frac{\gamma_I+\eta+\alpha+\mu}{\sigma}I_2^*\\[1ex]
I_2^* &= \frac{\mu \sigma (\gamma_A+\mu +\sigma ) (\mu +\xi +\rho ) (\alpha +\gamma_I+\eta +\mu )(\mathcal{R}_0 -1)}{\splitfrac{\beta_A (\alpha +\gamma_I+\eta +\mu )+\beta_I \sigma ) (\mu (\gamma_A+\mu +\xi ) (\alpha +\gamma_I+\eta +\mu )}{+\alpha \sigma (\mu +\xi )+\mu \sigma (\gamma_I+\eta +\mu +\xi ))}}\\[1ex]
R_2^* &= \frac{\gamma_A(\gamma_I + \eta+\alpha+\nu)I_2^*+\sigma(I_2^*(\gamma_I+\eta)+b\nu+\rho S_2^*)}{\sigma(\mu+\rho)}
\end{align}
\end{document}