如何使矩阵适合文本块?

如何使矩阵适合文本块?

因此,我写了一些解决方案,但行列式却从bo中流出。如何解决这个问题?

我正在使用 Dyan Yu 的 Sty 文件,可以通过快速谷歌搜索在 github 上找到它。

\documentclass[paper=6.125in:8.25in,twoside,openany,pagesize=pdftex,10pt]{scrbook}

\usepackage[retro,cabin,sleek,nosecthm]{dylanadi}
\usepackage[top=1cm, bottom=1.5cm, left=1cm, right=1cm]{geometry}
\usepackage{enumitem}
\usepackage{lmodern}


\title{KVPY SA Mathematics 2022}
\author{Ayan Khan}
\date{\today}
\date{\today}
\changemaincolor{blue}
\changesecondcolor{red}

\begin{document}

\begingroup % figure out how to put logo in
\notofont
\color{\secondcolor}
\let\newpage\relax%
\dylantitle
\endgroup

\newpage

%\tableofcontents
\newpage
\begin{problem}
\newline \newline
Let A be a matrix defined as $A = \displaystyle \begin{bmatrix}
    a_{1} & a_{2} & a_{3} & \dots  & a_{n} \\
    a_{n} & a_{1} & x_{2} & \dots  & a_{n-1} \\
    a_{n-1} & a_{n} & x_{1} & \dots  & a_{n-2} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    a_{2} & a_{3} & x_{4} & \dots  & a_{1}
\end{bmatrix}$ If $g(x)$ is equal to $\displaystyle a_{1}+a_{2}x+a_{3}x^{2}+\cdots+a_{n}x^{n-1}$ and $a_{i}$, where i = 1 to n, denote the $n^{th}$ complex root of unity. If $A ={\displaystyle \prod_{i=1}^{n} g(\alpha_{i})}$ and $b_{0}=\sqrt{2}+\sqrt{3}+\sqrt{6}$ and $\displaystyle b_{n} = \frac{b_{n}^{2}-5}{2(b_{n}+2)}$, $\displaystyle \forall n > 0,$ then porve that $\displaystyle b_{n} = cot\Big(\frac{2^{n-3}\pi}{3}\Big)-2k$.
\end{problem}

\begin{solution}
As the coefficients of $g(x)$ from the Determinant $A$, we shall solve this by assuming an another Determinant $\displaystyle Y =\displaystyle \begin{vmatrix}
    1 & \alpha_{1} & \alpha_{1}^{2} & \dots  & \alpha_{1}^{n-1} \\
    1 & \alpha_{2} & \alpha_{2}^{2} & \dots  & \alpha_{2}^{n-1} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    1 & \alpha_{n} & \alpha_{n}^{2} & \dots  & \alpha_{n}^{n-1}
\end{vmatrix}$
\newline Now,
$A \times Y =\begin{vmatrix}
    a_{1}+a_{2}\alpha_{1}+a_{3}\alpha_{1}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} & a_{1}+a_{2}\alpha_{2}+a_{n}\alpha_{2}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} & \alpha_{1}^{2} & \dots  & \alpha_{1}^{n-1} \\
    1 & \alpha_{2} & \alpha_{2}^{2} & \dots  & \alpha_{2}^{n-1} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    1 & \alpha_{n} & \alpha_{n}^{2} & \dots  & \alpha_{n}^{n-1}
\end{vmatrix}$
\end{solution}
\end{document}

在此处输入图片描述

答案1

我将重点介绍最后的代码块,即

\newline Now,
$A \times Y =\begin{vmatrix}
    a_{1}+a_{2}\alpha_{1}+a_{3}\alpha_{1}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} & a_{1}+a_{2}\alpha_{2}+a_{n}\alpha_{2}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} & \alpha_{1}^{2} & \dots  & \alpha_{1}^{n-1} \\
    1 & \alpha_{2} & \alpha_{2}^{2} & \dots  & \alpha_{2}^{n-1} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    1 & \alpha_{n} & \alpha_{n}^{2} & \dots  & \alpha_{n}^{n-1}
\end{vmatrix}$

唯一可行的排版方法是使用矩阵 (1,1) 和 (1,2) 位置元素的快捷方式,然后再拼出快捷方式。

请养成使用真实显示数学模式而不是$\displaystyle...$构造的习惯。

以下屏幕截图中的框线之所以存在,是因为该geometry包中加载了选项showframe

在此处输入图片描述

(题外话:我认为我可以发现最后一个等式中的两个错误。)

\documentclass[paper=6.125in:8.25in,10pt]{scrbook}

%%\usepackage[retro,cabin,sleek,nosecthm]{dylanadi}
\usepackage{newpxtext,newpxmath}
\usepackage{mathtools}
\usepackage[top=1cm, bottom=1.5cm, hmargin=1cm, showframe]{geometry}
\usepackage{xcolor}

\begin{document}

\noindent
\textcolor{red}{\Large Before}

Now,
    $A \times Y =
    \begin{vmatrix}
        a_{1}+a_{2}\alpha_{1}+a_{3}\alpha_{1}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} & 
        a_{1}+a_{2}\alpha_{2}+a_{n}\alpha_{2}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} & 
        \alpha_{1}^{2} & \dots  & \alpha_{1}^{n-1} \\
        1 & \alpha_{2} & \alpha_{2}^{2} & \dots  & \alpha_{2}^{n-1} \\
        \vdots & \vdots & \vdots & \ddots & \vdots \\
        1 & \alpha_{n} & \alpha_{n}^{2} & \dots  & \alpha_{n}^{n-1}
    \end{vmatrix}$
    

\bigskip\noindent
\textcolor{red}{\Large After}
\medskip

Now,
\[
\det K\equiv \det (A \times Y) =\begin{vmatrix}
    \kappa_{11} & \kappa_{12} & \alpha_{1}^{2} & \dots  & \alpha_{1}^{n-1} \\
    1 & \alpha_{2} & \alpha_{2}^{2} & \dots  & \alpha_{2}^{n-1} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    1 & \alpha_{n} & \alpha_{n}^{2} & \dots  & \alpha_{n}^{n-1}
\end{vmatrix}
\]
where
\begin{align*}
\kappa_{11}&=a_{1}+a_{2}\alpha_{1}+a_{3}\alpha_{1}^{2}+\cdots+a_{n}\alpha_{1}^{n-1} \\ 
\shortintertext{and}
\kappa_{12}&=a_{1}+a_{2}\alpha_{2}+a_{n}\alpha_{2}^{2}+\cdots+a_{n}\alpha_{1}^{n-1}\,.
\end{align*}

\end{document}

相关内容