\documentclass[14pt]{extarticle}
\usepackage{graphicx}
\begin{document}
\begin{equation}
\scalebox{0.5}[1]{$\displaystyle
\left\{\scalebox{2}[1]{$\displaystyle\begin{array}{ll}
P=P(r_+,M)\\
T=T(r_+,P(r_+,M)),
\end{array}$}\right.$}
\end{equation}
\begin{equation}
\scalebox{0.5}[1]{$\displaystyle
\left\{\scalebox{2}[1]{$\displaystyle\begin{array}{ll}
\bigg(\displaystyle\frac{\partial P}{\partial V}\bigg)_{T,Q_e}\bigg|_{V_c,T_c}=0\\
\bigg(\displaystyle\frac{\partial^2P}{\partial V^2}\bigg)_{T,Q_e}\bigg|_{V_c,T_c}=0.
\end{array}$}\right.$}
\end{equation}
\begin{equation}
A+\bigg(\bigg(\bigg(\frac{B}{C}+\frac{B}{C}\bigg)\bigg)\bigg)
\end{equation}
\end{document}
我想像 那样计算支架厚度(1)
。(2)
此外,也许有更好的方法来表示此类公式(1)-(3)
。
答案1
这个解决方案和这个包怎么样empheq
?
\documentclass[14pt]{extarticle}
\usepackage{graphicx}
\usepackage{empheq}
\usepackage{diffcoeff}
\begin{document}
\begin{empheq}[left=\empheqlbrace]{equation}
\begin{aligned}
P & =P(r_+,M)\\
T & =T(r_+,P(r_+,M)),
\end{aligned}
\end{empheq}
\begin{empheq}[left=\enspace \empheqlbrace]{equation}
\begin{aligned}
\biggl(\diffp{P}{V}[T,Q_e]\biggm|_{V_c,T_c} & =0\\
\bigg(\diffp[2]{P}{V}[T,Q_e]\biggm|_{V_c,T_c} & =0.
\end{aligned}
\end{empheq}
\begin{equation}
\quad A+\biggl(\biggl(\biggl(\frac{B}{C}+\frac{B}{C}\biggr)\biggr)\biggr)
\end{equation}
\end{document}