![使用表格设置框的相似高度](https://linux22.com/image/454739/%E4%BD%BF%E7%94%A8%E8%A1%A8%E6%A0%BC%E8%AE%BE%E7%BD%AE%E6%A1%86%E7%9A%84%E7%9B%B8%E4%BC%BC%E9%AB%98%E5%BA%A6.png)
我想编辑我之前关于调整盒子高度的帖子。
理想情况下,我希望两个框并排对齐,与模板的边距对齐。有人建议我使用“表格”,我尝试这样做。不幸的是,我不知道如何调整高度以使两个框的高度相同...
这显然是一个需要解决的问题,但我希望你能帮助我理解它,
提前致谢,
\documentclass{beamer}
\usepackage{fancybox}
\begin{document}
\begin{frame}
\setlength\fboxrule{1pt}
\begin{tabular}{cc}
%moments & canonique \\
\fcolorbox{blue!50!black}{white}{$
\begin{aligned}
\nabla \zeta_0 = -\frac{\delta r}{h^{*}} \ \text{avec :}\ \frac{1}{h^{*}} = \frac{1}{\alpha h_p} - \frac{1}{H}
\end{aligned}
$} &
\fcolorbox{blue!50!black}{white}{$
\begin{aligned}
\alpha = 1 - \frac{n}{n'} \ \text{et :} \ h_p = h_0
\end{aligned}
$} \\
\end{tabular}
\end{frame}
\end{document}
答案1
我将第三次尝试说服您tikz-hf
:
\documentclass{beamer}
\usepackage[beamer,customcolors,nofill,norndcorners]{hf-tikz}
\hfsetbordercolor{blue!50!black}
\begin{document}
\begin{frame}
$\displaystyle\tikzmarkin<1->{a}(0.1,-0.4)(-0.1,0.6)
\nabla \zeta_0 = -\frac{\delta r}{h^{*}} \ \text{avec :}\ \frac{1}{h^{*}} = \frac{1}{\alpha h_p} - \frac{1}{H}
\tikzmarkend{a}
$
\hfill
$\displaystyle\tikzmarkin<1->{b}(0.1,-0.4)(-0.1,0.6)
\alpha = 1 - \frac{n}{n'} \ \text{et :} \ h_p = h_0
\tikzmarkend{b}
$
\end{frame}
\end{document}
答案2
您还可以equal height group
使用tcolorbox
\documentclass{beamer}
\usepackage{tcolorbox}
\tcbset{
mybox/.style={size=fbox, sharp corners, colback=white,
colframe=blue, equal height group=equalbox,
before=, after=\hfill, hbox, valign=center}
}
\begin{document}
\begin{frame}
\begin{tcolorbox}[mybox]
$\displaystyle
\nabla \zeta_0 = -\frac{\delta r}{h^{*}} \ \text{avec :}\ \frac{1}{h^{*}} = \frac{1}{\alpha h_p} - \frac{1}{H}
$
\end{tcolorbox}
\begin{tcolorbox}[mybox]
$\displaystyle
\alpha = 1 - \frac{n}{n'} \ \text{et :} \ h_p = h_0
$
\end{tcolorbox}
\end{frame}
\end{document}
答案3
这是使用\vphantom
宏的典型任务:
\fcolorbox{blue!50!black}{white}{$
\begin{aligned}
\nabla \zeta_0 = -\frac{\delta r}{h^{*}} \ \text{avec :}\ \frac{1}{h^{*}} = \frac{1}{\alpha h_p} - \frac{1}{H}
\end{aligned}
$} &
\fcolorbox{blue!50!black}{white}{$
\begin{aligned}
\vphantom{\frac{1}{h_p}}
\alpha = 1 - \frac{n}{n'} \ \text{et :} \ h_p = h_0
\end{aligned}