最小化表格,插入并适合单页

最小化表格,插入并适合单页
\documentclass[12pt]{elsarticle}
%% for removing the footer 
\makeatletter
\def\ps@pprintTitle{%
  \let\@oddhead\@empty
  \let\@evenhead\@empty
  %\let\@oddfoot\@empty
  \let\@evenfoot\@oddfoot
}
\usepackage{multirow}
\usepackage{lineno} %% package for line number
%% The amssymb package provides various useful mathematical symbols
\usepackage{lscape}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{multicol}
\setlength{\columnsep}{1cm}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{url}
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
\usepackage{afterpage,lscape}
\usepackage{lipsum, pdflscape}
\usepackage[noabbrev,nameinlink]{cleveref} 

\usepackage[margin=25mm]{geometry}
\usepackage{graphicx}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}

\begin{document}

\begin{table}
\caption{Sample Table}
\footnotesize\sffamily
\begin{tblr}{colsep= 3pt,
             colspec={@{}r c X[2, l] X[1.5,l] X[l] X[l] @{}},
             row{1} = {font=\bfseries, c, m},
             rowsep= 3pt
             }
    \toprule
\textbf {Publishing \\date} & \textbf {Ref No.} & \textbf {Applied model} & \textbf {Dataset} & \textbf {Number of Outcomes (M)} & \textbf {Results (avg)} \\
    \midrule

2011 & \cite{--------} & ABCDEFG;AAAAAA and AAAAAAA & FFFFFFFFFFFFFFFF & ---  & 100\% \\

2011  & \cite{-------------} & Lightweight DCNN and Mask-RCNN & Greenhouse live TJ-Tomato and PlantVillage & --- & 100\% \\

2011  & \cite{---------} & DCNN & PlantVillage & 100 & 100\% \\

2011  & \cite{----------} & ResNet50; InceptionV2; MobileNetV1 & Deep transfer learning system dataset & --- & 100\% \\

2012 & \cite{-----------} & Concatenated residual networks (ComNet), VGGNet, AlexNet, ResNet, Xception, and MobileNet & PlantVillage and tea diseases dataset & 9.66 & 92.02\% and 86.17\% \\

2012 & \cite{-----------} & Pre-trained VGG-16, ResNet, GoogLeNet, Inception-v3, LeNet & Paddy field images & 14.81  & 95.89\% \\

2012  & \cite{-------------} & Hybrid DenseNet and Xception (XDNet); Inception-v3, MobileNet, VGG16, DenseNet201, Xception, VGG-INCEP & Apple leaf diseases & 10.16 & 95.82\% \\

2012  & \cite{--------} & DCNN, Inception-V3, ResNet-50, NasNet-Large, DenseNet-121 & Hydroponic experiments & 23.9; 26.7; 84.9; 8.1 & 80.67\%; 82.15\%; 86.25\%; 87.44\% \\

2012 & \cite{---------} & DCNN and MobileNetV2 & Maize FAW infested leaves, cobs and tassels dataset & ---  & 92\% \\ 

2012 & \cite{---------} & DCNN and YOLOV4 & Google images dataset & --- & 84\% and 95\%\\ 

2021  & \cite{------------} & DCNN, ANN, SVM, and K-NN & Paddy diseases dataset & --- & 94.08\% \\

2012  & \cite{------------} & VGG16, SVM, K-Means, K-means with SVM, Decision tree & Rice disease dataset & --- & 97\% \\ 

2012 & \cite{-------} & DCNN, Inception V3, ZF-Net, TextCNN and bidirectional gated recurrent unit (BiGRU); support vector machine (SVM), and extreme learning machine (ELM) models & Rice leaves dataset & ---  & 98.58\% \\

2012 & \cite{----------} & DCCN, i.e., Custom-Net, Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19 & Pearl millet infected with blast and rust dataset & 0.79; 5.44; 2.19; 23.80; 20.09; 14.78 & 84\% and 98.15\% \\

2012  & \cite{----------} & DCNN, ANN, SVM, and K-NN & PlantVillage & --- & 98.42\% \\

2012 & \cite{-----------} & AlexNet, SqueezeNet, GoogLeNet, ResNet-50, and ResNet-101 & Pearl millet infected with blast and Guava disease dataset & --- & 96.01\% \\

2012 & \cite{-----------} & AlexNet, GoogleNet, VGG16, and VGG19 & Healthy and infected maize dataset & ---  & 99.94\% \\

2012  & \cite{-----------} & DCNN, SVM, Decision tree, Linear Regression, K-NN, AlexNet, ResNet, VGG16, InceptionV3 & Alternaria Leaf Spot (ALS) disease dataset & --- & 98.41\% \\

2012  & \cite{---------} & YOLO-V5, VGG-16, AlexNet, ResNet-50, ResNet-101, DenseNet-121 and Bidirectional Cross-Modal Transformer (BiCMT) & Xiaotangshn National Precision Agriculture Demonstration Base dataset & --- & 96.92\% \\

2012  & \cite{--------} & YEYEYEYE, VGG16, VGG19, MobileNetV2, DHDHDHHDD, ResNet-V2, NasNetMobile, Inception-V3 and InceptionResNetV2 & Tipburn Disorder Detection in Strawberry Leaves dataset & 1.008; ;134.27; 139.578; 0.23; 7.77; 21.81; 58.34; 54.34; 4.27 & 96.03\% \\
    
    \bottomrule
\end{tblr}
    \end{table}

\end{document}

在此处输入图片描述

答案1

欢迎来到 TeX.SE!

尝试使单元格中文本较短的列变窄,而文本较多的列变宽。使用tabularray包可以轻松做到这一点:

\documentclass{article}
\usepackage[margin=25mm]{geometry}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%

\usepackage{graphicx}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}

\begin{document}
    \begin{table}
\caption{My caption}
\label{my-label}
\footnotesize\sffamily
\begin{tblr}{colsep= 4pt,
             colspec={@{}r c X[2, l] X[1.5,l] X[l] X[l] @{}},
             row{1} = {font=\bfseries, c, m},
             rowsep=3pt
             }
    \toprule
Yea     & SL No.    & DL model  & Dataset   & {No. of\\ parameter (M)}  & {Accuracy (Avg)}  \\
    \midrule
1000    & \cite{1} & Matrix-based CNN; AlexNet and VGG-16 & Winter wheat leaf diseases images & ---  & 93.1\% \\
2000    & \cite{2} & Lightweight DCNN and Mask-RCNN & Greenhouse live TJ-Tomato and PlantVillage & --- & 93.61\% \\
3000    & \cite{3} & DCNN & PlantVillage & 0.766 & 93.03\% \\
4000    & \cite{4} & ResNet50; InceptionV2; MobileNetV1 & Deep transfer learning system dataset & --- & 91\% \\
5020    & \cite{5} & Concatenated residual networks (ComNet), VGGNet, AlexNet, ResNet, Xception, and MobileNet & PlantVillage and tea diseases dataset & 98.10 & 90.41\% and 86.17\% \\
20000   & \cite{6} & Pre-trained VGG-16, ResNet, GoogLeNet, Inception-v3, LeNet & Paddy field images & 14.81  & 93.13\% \\
1111    & \cite{7} & Hybrid DenseNet and Xception (XDNet); Inception-v3, MobileNet, VGG16, DenseNet201, Xception, VGG-INCEP & Apple leaf diseases & 10.16 & 91.02\% \\
5643    & \cite{8} & DCNN, Inception-V3, ResNet-50, NasNet-Large, DenseNet-121 & Hydroponic experiments & 23.9; 26.7; 84.4; 8.1 & 41.67\%; 95.15\%; 76.25\%; 27.44\% \\
8356    & \cite{9} & DCNN and MobileNetV2 & Maize FAW infested leaves, cobs and tassels dataset & ---  & 97\% \\
8989    & \cite{10} & DCNN and YOLOV4 & Google images dataset & --- & 94\% and 45\% \\
4312    & \cite{11} & DCNN, ANN, SVM, and K-NN & Paddy diseases dataset & --- & 94.08\% \\
7865    & \cite{12} & VGG16, SVM, K-Means, K-means with SVM, Decision tree & Rice disease dataset & --- & 92\% \\
7878    & \cite{13} & DCNN, Inception V3, ZF-Net, TextCNN and bidirectional gated recurrent unit (BiGRU); support vector machine (SVM), and extreme learning machine (ELM) models & Rice leaves dataset & ---  & 92.58\% \\
4321    & \cite{14} & DCCN, i.e., Custom-Net, Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19 & Pearl millet infected with blast and rust dataset & 0.79; 5.44; 2.19; 23.80; 20.09; 14.78 & 84\% and 98.15\% \\
4444    & \cite{15} & DCNN, ANN, SVM, and K-NN & PlantVillage & --- & 91.42\% \\
6543    & \cite{16} & AlexNet, SqueezeNet, GoogLeNet, ResNet-50, and ResNet-101 & Pearl millet infected with blast and Guava disease dataset & --- & 96.74\% \\
3456    & \cite{17} & AlexNet, GoogleNet, VGG16, and VGG19 & Healthy and infected maize dataset & ---  & 96.94\% \\
3432    & \cite{18} & DCNN, SVM, Decision tree, Linear Regression, K-NN, AlexNet, ResNet, VGG16, InceptionV3 & Alternaria Leaf Spot (ALS) disease dataset & --- & 98.41\% \\
9743    & \cite{19} & YOLO-V5, VGG-16, AlexNet, ResNet-50, ResNet-101, DenseNet-121 and Bidirectional Cross-Modal Transformer (BiCMT) & Xiaotangshn National Precision Agriculture Demonstration Base dataset & --- & 96.92\% \\
3432    & \cite{19} & PSO-CNN, VGG16, VGG19, MobileNetV2, EfficientNet, ResNet-V2, NasNetMobile, Inception-V3 and InceptionResNetV2 & Tipburn Disorder Detection in Strawberry Leaves dataset & 1.008; ;134.27; 139.578; 0.23; 7.77; 21.81; 58.34; 54.34; 6.27 & 67.73\% \\
    \bottomrule
\end{tblr}
    \end{table}
\end{document}

在 Overleaf 中获得的编译结果:

在此处输入图片描述

(红线表示页面布局)

附录:
转换为长表:

\documentclass{article}
\usepackage[margin=25mm]{geometry}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%

\usepackage{graphicx}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}

\begin{document}
\begingroup
\small\sffamily\linespread{0.92}\selectfont
\begin{longtblr}[
caption = {My caption},
  label = {my-label}
            ]{rowhead = 1,
              colsep= 4pt,
              colspec={@{}r c X[2, l] X[1.5,l] X[l] X[l] @{}},
              row{1} = {font=\bfseries, c, m},
              rowsep=2pt
             }
    \toprule
Yea     &{SL\\ No.}& {DL\\ model}  & Dataset   & {No. of\\ parameter (M)}  & {Accuracy\\ (Avg)}  \\
    \midrule
%
% table body is the same as before
%

在此处输入图片描述

相关内容