晚上好大家,
我在使用 \nomencl 包时遇到了问题(使用 TeXstudio,代码如下所示)。
我将命名法分为“首字母缩略词”、“希腊字母”、“拉丁字母”和“上标和下标”。我希望每个部分都按字母顺序排列,但情况并非总是如此。例如,在“拉丁字母”部分,每当字母顶部有一个箭头、一个点或一个波浪号时,LateX 不会将其读取为实际字母,而是将其读取为不同的符号(如果我从文档中理解正确的话),这会导致字母排序不正确:LateX 按字母顺序对带点的字母进行排序,但不对其他字母进行排序。这个问题也适用于“希腊字母”。
有人可以向我解释如何解决这个问题吗?
感谢您的帮助和耐心。
里卡多
\documentclass[10pt,a4paper]{book}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
% Packages for the page layout
\usepackage[parts,floatperchapter,eulerchapternumbers,dottedtoc]{classicthesis}
\usepackage{arsclassica}
\usepackage{geometry}
\geometry{a4paper,top=3cm,bottom=3cm,left=2.5cm,right=2.5cm, heightrounded,bindingoffset=5mm}
% Nomenclature (Acronyms, greek letters and latin letters)
\usepackage[intoc]{nomencl}
\makenomenclature
\renewcommand{\nomgroup}[1]{%
\ifthenelse{\equal{#1}{L}}{\item[\textbf{Latin Letters}]}{%
\ifthenelse{\equal{#1}{G}}{\item[\textbf{Greek Letters}]}{%
\ifthenelse{\equal{#1}{A}}{\item[\textbf{Acronyms}]}{%
\ifthenelse{\equal{#1}{P}}{\item[\textbf{Superscripts and Subscripts}]}{%
}}}}}
% To include International System units
\usepackage{siunitx}
% For the use of equations
\usepackage{amsmath}
\usepackage{xfrac} % To have more elegant fractions
% To insert the € symbol
\usepackage{eurosym}
\begin{document}
\frontmatter
\nomenclature[A]{CEPCI}{Chemical Engineering Plant Cost Index [-]}
\nomenclature[A]{CFD}{Computational fluid dynamics [-]}
\nomenclature[A]{EtOH}{Ethanol [-]}
\nomenclature[A]{EU}{European Union [-]}
\nomenclature[A]{FCI}{Fixed capital investment [M\euro]}
\nomenclature[A]{GHGs}{Greenhouse gases [-]}
\nomenclature[A]{GHSV}{Gas hourly space velocity [Nm\textsuperscript{3}/(m\textsuperscript{3}\textsubscript{CAT}$\cdot$h)]}
\nomenclature[A]{KPIs}{Key performance indicators [-]}
\nomenclature[A]{LCOM}{Levelized cost of Methanol [\euro/t]}
\nomenclature[A]{MeOH}{Methanol [-]}
\nomenclature[A]{NPV}{Net present value [M\euro]}
\nomenclature[A]{RR}{Recycle ratio [-]}
\nomenclature[A]{rWGS}{Reverse water gas shift [-]}
\nomenclature[A]{WGS}{Water gas shift [-]}
\mainmatter
\nomenclature[L]{\sfrac{S}{C}}{Steam to methane ratio [-]}
\nomenclature[L]{$\dot{F}$}{Molar flow rate [mol/s]}
\nomenclature[G]{$\Delta$H$_\textup{ref}$}{Reforming reaction enthalpy [kJ/mol]}
\nomenclature[L]{$T$}{Gas phase temperature [K]}
\nomenclature[L]{$p$}{Pressure [bar]}
\nomenclature[A]{PSA}{Pressure swing adsorpion [bar]}
\nomenclature[L]{$PF$$_\textup{ratio}$}{Product to feed ratio [mol\textsubscript{MeOH} /mol\textsubscript{Feed}]}
\nomenclature[A]{LCOH}{Levelized cost of H\textsubscript{2} [\euro/t]}
\nomenclature[L]{$f$\textsubscript{i}}{i-th species fugacity [bar]}
\nomenclature[L]{$K$\textsubscript{eq,MeOH}}{Methanol reaction equilibrium constant [-]}
\nomenclature[L]{$K$\textsubscript{eq,rWGS}}{rWGS reaction equilibrium constant [-]}
\nomenclature[L]{$K$\textsubscript{ads,1}}{Adsorption constant [-]}
\nomenclature[L]{$K$\textsubscript{ads,2}}{Adsorption constant [1/bar\textsuperscript{0.5}]}
\nomenclature[L]{$K$\textsubscript{ads,3}}{Adsorption constant [1/bar]}
\nomenclature[L]{$r$\textsubscript{MeOH}}{Methanol reaction rate [mol/(s$\cdot$kg\textsubscript{CAT})]}
\nomenclature[L]{$r$\textsubscript{rWGS}}{rWGS reaction rate [mol/(s$\cdot$kg\textsubscript{CAT})]}
\nomenclature[G]{$\kappa$\textsubscript{i}}{Parameter derived from Arrhenius law (kinetic or adsorption constant) [Variable]}
\nomenclature[L]{$\widetilde{A}$\textsubscript{i}}{Generic pre-exponential factor [Variable]}
\nomenclature[L]{$\widetilde{B}$\textsubscript{i}}{Activation energy, adsorption enthalpy, or combination of these [J/mol]}
\nomenclature[G]{$\eta$\textsubscript{iso}}{Isentropic efficiency [-]}
\nomenclature[G]{$\eta$\textsubscript{mech}}{Mechanical efficiency [-]}
\nomenclature[A]{VLE}{Vapor-liquid equilibrium [-]}
\nomenclature[A]{EoS}{Equation of state [-]}
\nomenclature[A]{NRTL}{Non-random two-Liquid [-]}
\nomenclature[L]{$R$}{Ideal gas constant [J/(mol K)]}
\nomenclature[L]{$V\textsubscript{m}$}{Molar volume [m\textsuperscript{3}/mol]}
\nomenclature[L]{$b$}{Characteristic constant [m\textsuperscript{3}/mol]}
\nomenclature[L]{$a$}{Characteristic constant [Pa$\cdot$mol\textsuperscript{2}/m\textsuperscript{6}]}
\nomenclature[P]{$i$}{Chemical species or plant unit [-]}
\nomenclature[P]{$q$}{Chemical species [-]}
\nomenclature[P]{$\star$}{Dimensionelss [-]}
\nomenclature[L]{$x\textsubscript{q}$}{q-th component mole fraction [-]}
\nomenclature[L]{$k\textsubscript{iq}$}{T-dependent parameter [-]}
\nomenclature[G]{$\widetilde{\omega}$\textsubscript{i}}{Acentric Pitxer's factor of species i [-]}
\nomenclature[L]{$a$\textsubscript{i}}{$a$ coefficient of species i (Peng-Robinson) [-]}
\nomenclature[L]{$a$\textsubscript{q}}{$a$ coefficient of species q (Peng-Robinson) [-]}
\nomenclature[L]{$k\textsubscript{iq}\textsuperscript{(1,2,3)}$}{Binary interaction coefficients (Peng-Robinson) [-]}
\nomenclature[L]{$b$\textsubscript{i}}{$b$ coefficient of species i (Peng-Robinson) [-]}
\nomenclature[L]{$T$\textsubscript{crit}}{Critical temperature [K]}
\nomenclature[L]{$p$\textsubscript{crit}}{Critical pressure [Pa]}
\nomenclature[A]{ARD}{Absolute relative deviation [-]}
\nomenclature[L]{$p\textsubscript{i}\textsuperscript{exp}$}{Experimental pressure [bar]}
\nomenclature[L]{$p\textsubscript{i}\textsuperscript{mod}$}{Model pressure [bar]}
\nomenclature[L]{$N\textsubscript{p}$}{Number of points [bar]}
\nomenclature[P]{$p$}{Points [-]}
\nomenclature[A]{MDEA}{Methy dietahnolamine [-]}
\nomenclature[L]{$C$\textsuperscript{0}\textsubscript{p,i}}{Reference cost [\$]}
\nomenclature[L]{$K$\textsubscript{1 2 3,i}}{Fitting parameters for the calculation of unit reference cost [-]}
\nomenclature[L]{$A$\textsubscript{i}}{Reference unit for reference cost estimation of unit i [Variable (see Table \ref{Assumptions for FCI estimation})]}
\nomenclature[L]{$F$\textsubscript{p, i}}{Pressure factor of unit i [-]}
\nomenclature[L]{$F$\textsubscript{p,vessel i}}{Pressure factor for vessels [-]}
\nomenclature[L]{$D$\textsubscript{i}}{Diameter of unit i [m]}
\nomenclature[L]{$p$\textsubscript{i}}{Operating pressure of unit i [bar]}
\nomenclature[L]{$C$\textsubscript{1 2 3,i}}{Constants for pressure factor calculation [-]}
\nomenclature[L]{$K$\textsubscript{1 2 3,ref}}{Fitting parameters for the calculation of reformer reference cost [-]}
\nomenclature[L]{$A$\textsubscript{ref}}{Reference unit for reformer reference cost estimation [m\textsuperscript{3}/h]}
\nomenclature[L]{$B$\textsubscript{1 2 3,i}}{Bare module factor for FCI estimation [-]}
\nomenclature[L]{$F$\textsubscript{M,i}}{Material factor of unit i [-]}
\nomenclature[L]{$C$\textsubscript{BM, col i}}{Bare module cost of distillation columns [\$]}
\nomenclature[L]{$F$\textsubscript{q, i}}{Factor to for the calculation of the distillation columns C\textsubscript{BM, col i} [-]}
\nomenclature[L]{$N$\textsubscript{i}}{Number of trays [-]}
\nomenclature[A]{OFMSW}{Organic fraction of municipal solid waste [-]}
\nomenclature[A]{ISPRA}{Istituto superiore per la protezione e la ricerca ambientale [-]}
\nomenclature[A]{ARERA}{Autorità di regolazione per energia reti e ambiente [-]}
\nomenclature[A]{CAPEX}{Capital expenditures [M\euro]}
\nomenclature[A]{OPEX}{Operating expenditures [M\euro]}
\nomenclature[A]{CCF}{Capital charge factor [-]}
\nomenclature[A]{IGW}{Innovative Green World [-]}
\nomenclature[L]{$C$\textsubscript{OL}}{Labour operating costs [M\euro/year]}
\nomenclature[L]{$C$\textsubscript{UT}}{Operating Utility operating costs [M\euro/year]}
\nomenclature[L]{$COM$\textsubscript{d}}{Cost of manufacture without depreciation [M\euro/year]}
\nomenclature[L]{$R$\textsubscript{MeOH}}{Methanol selling price [\euro/t]}
\nomenclature[L]{$CF$\textsubscript{k}}{Yearly cash flow [M\euro/year]}
\nomenclature[L]{$C$\textsubscript{L}}{Cost of land purchasing [M\euro]}
\nomenclature[L]{$t$\textsubscript{rate}}{Taxation rate [\%]}
\nomenclature[G]{$\alpha$}{Discount rate [\%]}
\nomenclature[L]{$DCF$\textsubscript{k}}{Discounted cash flow [M\euro]}
\nomenclature[L]{$N$\textsubscript{NP}}{Number of unit operations involving non-particulate matter [-]}
\nomenclature[L]{$Y$\textsubscript{global}}{Global yield to methanol [-]}
\nomenclature[G]{$\eta$\textsubscript{Carbon}}{Carbon efficiency [-]}
\nomenclature[G]{$\eta$\textsubscript{Fuel}}{Fuel efficiency [-]}
\nomenclature[L]{$\dot{m}$\textsubscript{MeOH}}{Methanol mass flow rate [kg/s]}
\nomenclature[L]{$B$\textsubscript{Biogas}}{Fraction of burned biogas [-]}
\nomenclature[G]{$\chi$\textsubscript{i}}{i-th species conversion [-]}
\nomenclature[L]{$E$\textsubscript{CO\textsubscript{2}}}{{Emitted CO\textsubscript{2}} [kg\textsubscript{CO\textsubscript{2}emitted}/kg\textsubscript{CO\textsubscript{2}methanol}]}
\nomenclature[L]{$N$\textsuperscript{$\circ$ Comp.\textsubscript{biogas}}}{Number of biogas component species [-]}
\nomenclature[L]{$PBT$}{Payback time [years]}
\nomenclature[A]{IRR}{Investment rate of return [\%]}
\nomenclature[L]{$N$\textsubscript{op}}{Number of plant operating years [years]}
\nomenclature[L]{$N$\textsubscript{op, actual}}{Number of actual plant operating years [years]}
\nomenclature[L]{$N$\textsubscript{t}}{Number of tubes [-]}
\nomenclature[G]{$\varepsilon$}{Void fraction [-]}
\nomenclature[L]{$\dot{V}$\textsubscript{NORM,IN}}{Normal inlet volumetric flow rate [Nm\textsuperscript{3}/(h$\cdot$m\textsuperscript{3}\textsubscript{CAT})]}
\nomenclature[L]{$D$\textsubscript{t}}{Tube diameter [m]}
\nomenclature[L]{$L$\textsubscript{t}}{Tube length [m]}
\nomenclature[L]{$N$\textsubscript{t}}{Tubes number [-]}
\nomenclature[L]{$Pe$\textsubscript{M}}{Material Péclet number [-]}
\nomenclature[L]{$Pe$\textsubscript{T}}{Thermal Péclet number [-]}
\nomenclature[L]{$k$\textsubscript{eff,ax}}{Effective axial gas thermal conductivity [W/(m$\cdot$K)]}
\nomenclature[L]{$h$\textsubscript{w}}{Wall heat transfer coefficient [W/(m\textsuperscript{2}$\cdot$K)]}
\nomenclature[L]{$v$}{Gas superficial velocity [m/s]}
\nomenclature[G]{$\rho$\textsubscript{gas}}{Gas phase density [kg/m\textsuperscript{3}]}
\nomenclature[L]{$\mathcal{D}$\textsubscript{eff, ax H\textsubscript{2}}}{Effective axial thermal conducitivty of hydrogen [m/s]}
\nomenclature[L]{$T$\textsubscript{cool}}{Cooling medium temperature [K]}
\nomenclature[L]{$d$\textsubscript{pe}}{Diameter of a sphere with the same volumetric surface as the pellet [m]}
\nomenclature[L]{$d$\textsubscript{p}}{Diameter of the pellet [m]}
\nomenclature[L]{$k$\textsubscript{gas}}{Gas thermal conductivity [W/(m$\cdot$K)]}
\nomenclature[L]{$k$\textsuperscript{$\circ$}\textsubscript{gas}}{Gas static thermal conductivity [W/(m$\cdot$K)]}
\nomenclature[L]{$Pr$}{Prandtl number [-]}
\nomenclature[L]{$Re$\textsubscript{d\textsubscript{pe}}}{Reynolds number, calculated with $d$\textsubscript{pe} [-]}
\nomenclature[L]{$t$}{Time coordinate [s]}
\nomenclature[L]{$z$}{Axial coordinate [m]}
\nomenclature[L]{$r$}{Radial coordinate [m]}
\nomenclature[L]{$W$\textsubscript{t}}{Mass flow rate per unit area [kg/(s$\cdot$m\textsuperscript{2})]}
\nomenclature[P]{$j$}{Chemical reaction [-]}
\nomenclature[P]{$k$}{Discretization point on diffusion length [-]}
\nomenclature[L]{$\mathcal{D}$\textsubscript{eff, rad i}}{Effective radial diffusivity of i-th species [m/s]}
\nomenclature[L]{$K$\textsubscript{m,i}}{Gas – solid mass transfer coefficient [m/s]}
\nomenclature[L]{$a$\textsubscript{v}}{Catalyst pellet specific volumetric surface [m\textsuperscript{2}/m\textsuperscript{3}]}
\nomenclature[G]{$\omega$\textsubscript{i}}{Mass fraction of component i in the gas phase [-]}
\nomenclature[G]{$\omega$\textsubscript{s edge, i}}{Mass fraction of component i in the gas phase at the catalyst edge [-]}
\nomenclature[G]{$\rho$\textsubscript{cat}}{Catalyst density [kg\textsubscript{CAT}/m\textsuperscript{3}\textsubscript{CAT}]}
\nomenclature[L]{$MM$\textsubscript{i}}{Molar mass of component i [kg/mol]}
\nomenclature[G]{$\nu$\textsubscript{ij}}{Stoichiometric coefficient of species i in reaction j [-]}
\nomenclature[L]{$r$\textsubscript{j}}{Rate of j-th reaction [mol/(s$\cdot$kg\textsubscript{CAT})]}
\nomenclature[L]{$\bar{x}$}{Diffusion length coordinate [m]}
\nomenclature[L]{$r$\textsubscript{jk}}{Rate of j-th reaction in k-th point of diffusion length [mol/(s$\cdot$kg\textsubscript{CAT})]}
\nomenclature[L]{$\textup{NR}$}{Number of reactions [-]}
\nomenclature[G]{$\omega$\textsubscript{s, i}}{Mass fraction of component i in the gas phase inside catalyst [-]}
\nomenclature[L]{$\mathcal{D}$\textsubscript{eff, intr i}}{Effective intraparticle diffusion of i-th species [m/s]}
\nomenclature[L]{$c$\textsubscript{p, gas}}{Specific heat at constant pressure [J/(kg$\cdot$K)]}
\nomenclature[L]{$k$\textsubscript{eff,rad}}{Effective radial gas thermal conductivity [W/(m$\cdot$K)]}
\nomenclature[L]{$h$\textsubscript{conv}}{Convective heat transfer coefficient [W/(m\textsuperscript{2}$\cdot$K)]}
\nomenclature[L]{$T$\textsubscript{s}}{Solid phase temperature [K]}
\nomenclature[G]{$\Delta H$\textsubscript{r\textsubscript{j}}}{j-th reaction enthalpy [J/mol]}
\nomenclature[L]{$MM$\textsubscript{gas}}{Gas molar mass [kg/mol]}
\nomenclature[L]{$NC$}{Number of components [-]}
\nomenclature[L]{$NR$}{Number of reactions [-]}
\nomenclature[L]{$f$\textsubscript{m}}{Friction factor [-]}
\nomenclature[L]{$D$\textsubscript{L}}{Diffusion length [m]}
\nomenclature[G]{$\omega$\textsubscript{i}\textsuperscript{IN N}}{Mass fraction of gas phase component i at the inlet section of the reactor (transient phase), when H\textsubscript{2} and CO\textsubscript{2} are inseted into the system [-]}
\nomenclature[G]{$\omega$\textsubscript{i}\textsuperscript{IN}}{Mass fraction of gas phase component i at the inlet section of the reactor, when H\textsubscript{2} is not present and CO\textsubscript{2} is vented [-]}
\nomenclature[G]{$\omega$\textsubscript{s,i}\textsuperscript{IN N}}{Mass fraction of gas phase component i inside the catalyst at the inlet section of the reactor (transient phase), when H\textsubscript{2} and CO\textsubscript{2} are inseted into the system [-]}
\nomenclature[G]{$\omega$\textsubscript{s,i}\textsuperscript{IN}}{Mass fraction of gas phase component i inside the catalyst at the inlet section of the reactor, when H\textsubscript{2} is not present and CO\textsubscript{2} is vented [-]}
\nomenclature[L]{$\mathcal{D}$\textsubscript{iq}}{Binary diffusion coefficient [m/\textsuperscript{2}s]}
\nomenclature[G]{$\Xi$\textsubscript{i}}{i-th species diffusion volume [m\textsuperscript{3}/mol]}
\nomenclature[L]{$A$\textsubscript{c}}{Cross sectional area of the single tube [m\textsuperscript{2}]}
\nomenclature[L]{$\dot{m}$}{Mass flow rate going through the reactor [kg/s]}
\nomenclature[L]{$Sh$\textsubscript{i}}{Sherwood number of species i [-]}
\nomenclature[L]{$Sc$\textsubscript{i}}{Schmidt number of species i [-]}
\nomenclature[A]{BCs}{Boundary conditions [-]}
\nomenclature[G]{$\mu$\textsubscript{gas}}{Gas mixture viscosity [Pa$\cdot$s]}
\nomenclature[L]{$S$\textsubscript{p}}{Particle external surface [m\textsuperscript{2}]}
\nomenclature[L]{$V$\textsubscript{p}}{Particle volume [m\textsuperscript{3}]}
\nomenclature[G]{$\varepsilon$\textsubscript{p}}{Pellet porosity [-]}
\nomenclature[G]{$\tau$}{Pellet tortuosity [-]}
\nomenclature[L]{$\mathcal{D}$\textsubscript{K,i}}{Knudsen diffusion coefficient of species i [m\textsuperscript{2}/s]}
\nomenclature[L]{$r$\textsubscript{p}}{Mean pore radius [m]}
\nomenclature[L]{$k$\textsubscript{cat}}{Catalyst thermal conductivity [W/(m$\cdot$K)]}
\nomenclature[L]{$d$\textsubscript{pv}}{Diameter of a sphere with the same volume as the pellet [m]}
\nomenclature[L]{$d$\textsubscript{pa}}{Diameter of a sphere with the same surface as the pellet [m]}
\nomenclature[L]{$Re$\textsubscript{d\textsubscript{pa}}}{Reynolds number, calculated with $d$\textsubscript{pa} [-]}
\nomenclature[L]{$Re$\textsubscript{d\textsubscript{pv}}}{Reynolds number, calculated with $d$\textsubscript{pv} [-]}
\nomenclature[L]{$Nu$}{Nusselt number [-]}
\nomenclature[L]{$h$\textsubscript{w, conv}}{Convective term of the wall heat transfer coefficient [W/(m\textsuperscript{2}$\cdot$K)]}
\nomenclature[L]{$\dot{F}$\textsubscript{rec}}{Mole flow rate of recycled gases to the methanol reactor [mol/s]}
\nomenclature[L]{$\dot{F}$\textsubscript{freh}}{Mole flow rate of fresh gases to the methanol reactor [mol/s]}
\nomenclature[L]{$\dot{F}$\textsubscript{syn, in}}{Mole flow rate of fresh syngas at methanol reactor entrance [mol/s]}
\nomenclature[L]{$\dot{F}$\textsubscript{CO\textsubscript{2}}}{Mole flow rate of carbon dioxide (vented or recycled) [mol/s]}
\nomenclature[L]{$\dot{F}$\textsubscript{H\textsubscript{2}}}{Mole flow rate of hydrogen (vented or recycled) [mol/s]}
\nomenclature[A]{PDEs}{Partial Differential Equations [-]}
\nomenclature[A]{OCFEM}{Orthogonal Collocation on Finite Elements Method [-]}
\nomenclature[A]{BFDM}{Backward Finite Differences Method [-]}
\nomenclature[L]{$T$\textsubscript{c}}{Centerline temperature [K]}
\nomenclature[L]{$T$\textsubscript{w}}{Wall temperature [K]}
\nomenclature[L]{$T$\textsubscript{av}}{Average temperature [K]}
\nomenclature[L]{$z$\textsuperscript{$\star$}}{Dimensionless reactor length [-]}
\nomenclature[L]{$T$\textsubscript{syngas}}{Syngas temperature [K]}
\nomenclature[L]{$T$\textsubscript{max, 1D}}{Maximum temperature of the 1D model [K]}
\nomenclature[L]{$T$\textsubscript{max, 2D}}{Maximum temperature of the 2D model [K]}
\nomenclature[L]{$U$}{Global heat exchange coefficient [W/(m\textsuperscript{2}$\cdot$K)]}
\nomenclature[L]{$d$$\dot{Q}$\textsubscript{tube}}{Infinitesimal heat released by the tube [kW]}
\nomenclature[L]{$d$$\dot{F}$\textsubscript{CH\textsubscript{3}OH}}{Infinitesimal CH\textsubscript{3}OH mole flow rate per tube, flowing in the integration step [mol/s]}
\nomenclature[L]{$d$$\dot{F}$\textsubscript{CO}}{Infinitesimal CO mole flow rate per tube, flowing in the integration step [mol/s]}
\nomenclature[A]{POCS}{Periodic open cellular structures [-]}
\nomenclature[L]{$\overrightarrow{\textbf{v}}$}{Velocity Vector (CFD simulations) [m/s]}
\nomenclature[L]{$\widetilde{\overrightarrow{\textbf{v}}}$}{Favre averaged velocity vector (for CFD simulations) [m/s]}
\nomenclature[L]{$\overrightarrow{\textbf{J}}$\textsubscript{i}}{Material flux due to diffusion (CFD simulations) [kg/(m\textsuperscript{2}$\cdot$s)]}
\nomenclature[L]{$E$\textsubscript{tot}}{Total energy [J/m\textsuperscript{3}]}
\nomenclature[L]{$\overrightarrow{\textbf{F}}$\textsubscript{b}}{Body forces (for CFD simulations) [N/m\textsuperscript{3}]}
\nomenclature[L]{$\mathcal{D}$\textsubscript{kin, i}}{Kinematic diffusion coefficient of species i (for CFD simulations) [m\textsuperscript{2}/2]}
\nomenclature[P]{$d$}{Generic spatial coordinate (for CFD simulations) [-]}
\nomenclature[L]{$\tilde{h}$\textsubscript{stat}}{Favre-averaged specific static enthalpy (for CFD simulations) [J/kg]}
\nomenclature[L]{$v$\textsubscript{x}}{$x$ component of the velocity vector (for CFD simulations) [m/s]}
\nomenclature[L]{$v$\textsubscript{y}}{$y$ component of the velocity vector (for CFD simulations) [m/s]}
\nomenclature[L]{$v$\textsubscript{z}}{$z$ component of the velocity vector (for CFD simulations) [m/s]}
\nomenclature[L]{$S$\textsubscript{M\textsubscript{x}}}{$x$ component of the momentum source (for CFD simulations) [N/m\textsuperscript{3}]}
\nomenclature[L]{$S$\textsubscript{M\textsubscript{y}}}{$y$ component of the momentum source (for CFD simulations) [N/m\textsuperscript{3}]}
\nomenclature[L]{$S$\textsubscript{M\textsubscript{z}}}{$z$ component of the momentum source (for CFD simulations) [N/m\textsuperscript{3}]}
\nomenclature[P]{$\widetilde{}$}{Densitiy weighetd or Favre-averaged parameter (for CFD simulations) [-]}
\nomenclature[P]{$\bar{}$}{Time-averaged parameter [-]}
\nomenclature[L]{$k$}{Turbulent kinetic energy epr unit mass [J/kg]}
\nomenclature[G]{$\delta$\textsubscript{ij}}{Kronecker delta [-]}
\nomenclature[G]{$\mu$\textsubscript{t}}{Turbulent (or Eddy) viscosity [Pa$\cdot$s]}
\nomenclature[G]{$\Gamma$\textsubscript{t}}{Turbulent (or Eddy) diffusivity [m/s]}
\nomenclature[G]{$\sigma$\textsubscript{t}}{Turbulent Prandtl number [-]}
\nomenclature[L]{$C$\textsubscript{$\mu$}}{Dimensionless constant [-]}
\nomenclature[G]{$\epsilon$}{Rate of viscous dissipation (for CFD calculations) [-]}
\nomenclature[L]{$S$\textsubscript{h}}{Energy source (CFD calculations) [W/m\textsuperscript{3}]}
\nomenclature[L]{$q$\textsubscript{w}}{Wall heat flux [W/m\textsuperscript{2}]}
\nomenclature[L]{$u$\textsuperscript{$\star$}}{Alternative velocity scale (for CFD computations) [m/s]}
\nomenclature[L]{$Pr$}{Prandtl number (for CFD computations) [-]}
\nomenclature[G]{$\Gamma$}{Function of $Pr$ number (for CFD computations) [-]}
\nomenclature[L]{$y$\textsuperscript{$\star$}}{Dimensionless distance from the wall (for CFD computations) [-]}
\nomenclature[P]{$\dot{}$}{Per unit time [-]}
\nomenclature[G]{$\chi$\textsubscript{CO\textsubscript{2}}}{Carbon dioxide conversion (Portha's definition) [-]}
\nomenclature[G]{$\chi$\textsubscript{H\textsubscript{2}}}{Hydrogen conversion (Portha's definition) [-]}
\nomenclature[L]{$S$\textsubscript{MeOH}}{Methanol selectivity (Portha's definition) [-]}
\nomenclature[L]{$x$\textsubscript{CO, in}}{Inlet CO mole fraction (CFD validation) [-]}
\nomenclature[L]{$x$\textsubscript{CO\textsubscript{2}, in}}{Inlet CO\textsubscript{2} mole fraction (CFD validation) [-]}
\nomenclature[L]{$x$\textsubscript{H\textsubscript{2}, in}}{Inlet H\textsubscript{2} mole fraction (CFD validation) [-]}
\nomenclature[L]{$m$\textsubscript{CAT}}{Catalyst mass [kg]}
\nomenclature[L]{$\dot{F}$\textsubscript{in}}{Inlet molar flow rate [mol/s]}
\nomenclature[L]{$L$\textsubscript{reac}}{Reactor length [m]}
\nomenclature[L]{$V$\textsubscript{pillow}}{Pillow-plate reactor volume [m\textsuperscript{3}]}
\printnomenclature[5cm]
\backmatter
\end{document}