帕累托最优 埃奇沃思盒

帕累托最优 埃奇沃思盒

我对 Latex 还很陌生,我想制作一张像我附上的那样的图表。这个想法是要清晰地标识出 Edgeworth 框的帕累托集,以及契约曲线、初始禀赋 (omega) 和无差异曲线。

我的代码的起点来自于我在本页看到的一个问题的解决方案,但我不知道如何从那里获取代码来更改它并使其看起来像我需要的那样

帕累托效率的埃奇沃思盒

在此处输入图片描述

答案1

虽然不完全是您想要的,但是足够接近以便您可以自己修改它。

\documentclass[border=10pt]{standalone}
\usepackage{tikz}
\usetikzlibrary{decorations.markings,intersections}
\begin{document}
\begin{tikzpicture}
\coordinate (A) at (0,0);
\coordinate (B) at (8,6);
\begin{scope}[->,>=latex,thick]
    \draw (A) -- +(9,0);
    \draw (A) -- +(0,7);
    \draw (B) -- +(-9,0);
    \draw (B) -- +(0,-7);
\end{scope}
\node[below left] at (A) {$O_1$};
\node[above right] at (B) {$O_2$};

\draw[dashed, thick, postaction={decorate, decoration={markings,
    mark=between positions 0.2 and 0.8 step 0.2 with {
        \draw[black,solid] (-0.3,0.7) to[out=-50,in=90] (0,0) 
            to[out=-90,in=50] (-0.3,-0.7);
        \draw[red,solid] (0.3,0.7) to[out=-130,in=90] (0,0) 
            to[out=-90,in=130] (0.3,-0.7);
        }}}, name path=pareto] (A) to[out=50,in=-160] (B);

\coordinate (C) at (5.5,2.5);
\coordinate (D) at (3.5,5.5);

\draw[black, thick, shorten >=-20,shorten <=-10, name path=f2] 
(C) to[out=100,in=-10] (D);
\draw[red, thick, shorten >=-10,shorten <=-10, name path=f1] 
(C) to[out=170,in=-90] (D);
\fill[black] (C) circle (2pt) node[above right] {$\omega$};

\path [name intersections={of=pareto and f1,by=F1}];
\path [name intersections={of=pareto and f2,by=F2}];

\begin{scope}
    \clip (F1) rectangle (F2); 
    \draw[line width=2pt] (A) to[out=50,in=-160] (B);
\end{scope}
    
\draw[->,>=latex] (4,2) node[below]{\footnotesize 
    \begin{tabular}{c}Contract\\curve\end{tabular}} 
    to[out=90,in=-70] (4.2,4);

\draw[->,>=latex] (5.5,6.5) node[above]{\footnotesize Pareto set} to[out=-60,in=120] (7,5.7);
\draw[->,>=latex] (5.5,6.5) to[out=-70,in=120] (5.5,5);

\end{tikzpicture}
\end{document}

在此处输入图片描述

相关内容