在 tcolorbox 中并排显示

在 tcolorbox 中并排显示

我遇到一个问题,无法通过parallel包 创建新的图像行在此处输入图片描述

\documentclass[10pt,a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage{amsmath,mathtools}
\usepackage{amsfonts,amssymb}
\usepackage{amsthm,calc}
\usepackage{newtxtext,newtxmath}
\usepackage{caption,cleveref}
\usepackage{graphics}
\usepackage[export]{adjustbox}
\usepackage{lipsum}
\usepackage{parallel}
\usepackage{todonotes}

\usepackage{tcolorbox}
\tcbuselibrary{most,breakable,skins,xparse}


\captionsetup{labelfont=bf, singlelinecheck=true,figureposition=above}% added, had to be here
\captionsetup[table]{singlelinecheck}% added for changing table caption

\newcounter{example}[section]
\newcommand{\resteq}{\usetagform{brackets}  \setcounter{foo}{\value{equation}}
    \setcounter{equation}{0}}
\newcommand{\unrest}{\setcounter{equation}{\value{foo}}\usetagform{default}}
%---------
\newenvironment{example}[1][]{\parskip=1ex\par\noindent\refstepcounter{example}{\bfseries\theexample}.\enspace#1}{\par\noindent\parskip=1ex}
\newenvironment{solution}[1][]{\textbf{\textit{Solution}}.\enspace\ignorespaces#1\parskip=1ex}{\;$\lhd$\par\noindent\parskip=1ex}



\allowdisplaybreaks
\day 20\month 10 \year 2023

\begin{document}
    \lipsum[1-3]
    \lipsum[1]

    \begin{example}
        Evaluate 
        \[
        \iint_R xy \; dA
        \]
        over the region enclosed\footnote{text} between $y= \frac{1}{2}x$ ,  $ y= \sqrt{x}$ , $x=2$,$x=4$.
    \end{example}
    \begin{tcolorbox}[enhanced,breakable,size=title,add to width=2.5cm,right skip=.5cm,left skip=0.2cm,,right=.36cm]
        \begin{solution}
            \begin{Parallel}[c]{.6\textwidth}{0.34cm} 
                \ParallelLText{
                        
                    As we can see from the drawing \cref{fig:dr1} we take a vertical slice and then 
                    %       \rule{0pt}{1ex}
                    \begin{align*}
                        \int_{2}^{4}\int_{\frac{1}{2} x}^{\sqrt{x}} xy \; dydx
                        &= \int_{2}^{4} x \frac{y^2}{2}\Big|_{\frac{1}{2} x}^{\sqrt{x}}\\
                        &=
                        \frac{1}{2}\int_{2}^{4} {x^2} -{\frac{1}{2} x^3} \; dx\\
                        &=
                        \frac{1}{2} \left[\frac{x^3}{3} - \frac{x^4}{16}\right]_{2}^{4}\\
                        &=\frac{11}{6}
                    \end{align*}
                }
                
                \ParallelRText{
                    \leavevmode\\%[\baselineskip]
                    \begin{minipage}[t][0pt][t]{.3\textwidth}
                        \centering
                        \includegraphics[valign=t,width=\linewidth]{example-image.pdf}
                        \captionof{figure}{}
                        \label{fig:dr1}
                    \end{minipage}
                    
                    
                    }
                \ParallelPar
                \ParallelLText{
                    
                    As we can see from the drawing \cref{fig:dr2} we take a horizontal slice and then 
                    
                    \begin{align}
                        \int_{\sqrt{2}}^{2} \int_{y^2}^{2y} xy  \tag*{I}\; dx dy\label{eq:ex1}\\
                        \int_{1}^{\sqrt{2}} \int_{2}^{2y} xy \; dx dy \tag*{II}\label{eq:ex2}
                    \end{align}
                    then
                    \[
                    \int_{\sqrt{2}}^{2} \int_{y^2}^{2y} xy \; dx dy \;+ \int_{1}^{\sqrt{2}} \int_{2}^{2y} xy \; dx dy \tag*{III} \label{eq:ex3}
                    \]
                    \\
                    in \eqref{eq:ex1}
                    \begin{align*}
                        \int_{\sqrt{2}}^{2} \int_{y^2}^{2y} xy \; dx dy 
                        &=\int_{\sqrt{2}}^{2} x(\frac{y^2}{2}) \big|_{y^2}^{2y}\\
                        &=\frac{1}{2}\int_{\sqrt{2}}^{2} (4y^2-y^4) \\
                        &=\frac{1}{2}(y^4-\frac{1}{6}y^6)\big|_{\sqrt{2}}^{2}\\
                        &=\frac{1}{2}\left[ \left(2^4 - \frac{2^6}{6}\right)-\left((\sqrt{2})^4 - \frac{(\sqrt{2})^6}{6}\right)  \right] \\
                        &=\frac{4}{3}\\     
                    \end{align*}
                    in \eqref{eq:ex2}
                    \begin{align*}
                        \int_{1}^{\sqrt{2}} \int_{2}^{2y} xy \; dx dy 
                        &=
                        \frac{1}{2} \int_{1}^{\sqrt{2}} y(4y^2-2^2)dy \\
                        &=\frac{(y^2-1)^2}{2}\big|_{1}^{\sqrt{2}}  \\
                        &=\frac{1}{2}
                    \end{align*}
                    therefor \eqref{eq:ex3}
                    \[
                    \int_{\sqrt{2}}^{2} \int_{y^2}^{2y} xy \; dx dy \;+ \int_{1}^{\sqrt{2}} \int_{2}^{2y} xy \; dx dy \; = \frac{11}{6}
                    \]
                }
                \ParallelRText{
                    \begin{minipage}[t][0pt]{.3\textwidth}
                        \centering
                        \includegraphics[valign=t,width=\linewidth]{example-image.pdf}
                        \captionof{figure}{}
                    \end{minipage}
                    \\
                            \begin{minipage}[t][0pt]{.3\textwidth}
                        \centering
                        \includegraphics[valign=t,width=\linewidth]{example-image.pdf}
                        \captionof{figure}{}
                    \end{minipage}
                }
                \ParallelPar
                
                
            \end{Parallel}      
            
        \end{solution}
    \end{tcolorbox}
    
\end{document}

相关内容