我制作了以下幻灯片:
\documentclass[10pt, aspectratio=169]{beamer}
\usefonttheme{serif}
\usetheme{quito-light}
\usepackage{booktabs} %tables
\usepackage{siunitx} %units, numbers
\usepackage{mathtools}
\usepackage[singlelinecheck=false]{caption}
\usepackage{tabularray}
\UseTblrLibrary{amsmath,booktabs}
\setbeamerfont{caption}{size=\footnotesize}
\setbeamertemplate{caption label separator}[space]
\setbeamertemplate{frametitle}[default][center]
\begin{document}
\frame{\titlepage}
\frame{{Table of contents}\tableofcontents}
% SECTION 1
\begin{section}{Characteristics of atmospheric motion}
% FRAME 1
\begin{frame}{FRAME 1}
\scriptsize
\begin{table}
\captionsetup{font=scriptsize}
\begin{+array}{colspec={Q[wd=0.566\linewidth]},delimiter={right=\rbrace,left=.}}
\caption{Characteristics of motion}
\vspace{-1ex}
\begin{tblr}{hline{1,Z},colspec={@{} l Q[l, mode={math}] @{}},rowsep=1pt}
Earth's radius&a\sim\qty{e6}{m}\\
Earth's rotation rate&\Omega\sim\qty{e-4}{s^{-1}}\\
Acceleration of gravity&g\sim\qty{9,81}{m.s^{-2}}\\
Sea-level pressure&p\textsubscript{ref}\sim\qty{e5}{kg.m^{-1}.s^{-2}}\\
H\textsubscript{2}O freezing temperature &T\textsubscript{ref}\sim\qty{273}{K}\\
\begin{+array}{colspec={@{} l}, rowsep=1pt, delimiter={left=.,right=\rbrace}}
{Equator-pole (tropospheric vertical)\\
potential temperature difference}
\end{+array}
&\triangle\Theta\sim\qty{40}{K}\\
Dry gas constant&R=\qty{287}{m^2.s^{-2}.K}\\
Dry isentropic exponent&\gamma\sim\qty{1,4}{}\\
\end{tblr}\\[-1ex]
\begin{+array}
\caption{Auxiliary quantities}
\vspace{-1ex}
\begin{tblr}{hline{1,Z},colspec={@{} l Q[l, mode={math}] @{}},rowsep=1pt}
Sea-level air density&\rho\textsubscript{ref}=\frac{p\textsubscript{ref}}{RT\textsubscript{ref}}\sim\qty{1,25}{kg.m^{-3}}\\
Density scale height&h\textsubscript{sc}=\frac{\gamma p\textsubscript{ref}}{g \rho\textsubscript{ref}}\sim\qty{11}{km}\\
Sound speed&c\textsubscript{ref}=\sqrt{\frac{\gamma p\textsubscript{ref}}{\rho\textsubscript{ref}}}\sim\qty{330}{m.s^{-1}}\\
Internal wave speed&c\textsubscript{int}=\sqrt{gh\textsubscript{sc}\frac{\triangle\Theta}{T\textsubscript{ref}}}\sim\qty{110}{m.s^{-1}}\\
Thermal wind velocity&u\textsubscript{ref}=\frac{2}{\pi}\frac{gh_{sc}}{\Omega a}\frac{\triangle\Theta}{T\textsubscript{ref}}\sim\qty{12}{m.s^{-1}}\\
\end{tblr}
\end{+array}
\end{+array}
\qquad
\begin{minipage}{0.342\linewidth}
\caption{Physically distinguished scales}
\vspace{-1ex}
\begin{tblr}{hline{1,Z},colspec={@{} l Q[l, mode={math}] @{}},rowsep=1pt}
Planetary scale&L\textsubscript{p}=\frac{\pi}{2}{a}\sim\qty{10000}{km}\\
Obukhov radius&L\textsubscript{Ob}=\frac{c\textsubscript{ref}}{\Omega}\sim\qty{3300}{km}\\
Synoptic scale&L\textsubscript{Ro}=\frac{c\textsubscript{int}}{\Omega}\sim\qty{1100}{km}\\
Meso-$\beta$ scale&L\textsubscript{Meso}\frac{u\textsubscript{ref}}{\Omega}\sim\qty{150}{km}\\
Meso-$\gamma$ scale&h\textsubscript{sc}=\frac{\gamma p\textsubscript{ref}}{g \rho\textsubscript{ref}}\sim\qty{11}{km}\\
\end{tblr}
\end{minipage}
\end{table}
\end{frame}
\end{section}
\end{document}
如您所见,表格的位置不正确。我似乎找不到我的错误。您最终能帮忙吗?
答案1
有几个问题:
部分不是环境。
\section{section name}
在开头写。这就是你对部分所需要做的事情语法
\frame{{frametitle} content}
真的很奇怪。不要养成使用这个的习惯。我知道这来自你的主题示例,但这最多只能算是偶然起作用。的语法
+array
是\begin{+array}{<settings>} <content> \end{+array}
。在+array
第二个表格中,{}
缺少设置的 。这将导致错误。您可以添加它,也可以删除整个环境,这没什么意义。你确定把这么多内容挤在一张幻灯片上是个好主意吗?即使有了你的
\scriptsize
,框架上也没有足够的空间来容纳两个表格,我不得不进一步缩小字体。我不相信观众甚至能读懂这么小的文字。
\documentclass[10pt, aspectratio=169]{beamer}
\usefonttheme{serif}
\usetheme{quito-light}
\usepackage{booktabs} %tables
\usepackage{siunitx} %units, numbers
\usepackage{mathtools}
\usepackage[singlelinecheck=false]{caption}
\usepackage{tabularray}
\UseTblrLibrary{amsmath,booktabs}
\setbeamerfont{caption}{size=\footnotesize}
\setbeamertemplate{caption label separator}[space]
\setbeamertemplate{frametitle}[default][center]
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Table of contents}
\tableofcontents
\end{frame}
% SECTION 1
\section{Characteristics of atmospheric motion}
% FRAME 1
\begin{frame}
\frametitle{FRAME 1}
\tiny
\begin{table}
\captionsetup{font=scriptsize}
\begin{+array}{colspec={Q[wd=0.568\linewidth]},delimiter={right=\rbrace,left=.}}
\caption{Characteristics of motion}
\vspace{-1ex}
\begin{tblr}{hline{1,Z},colspec={@{} l Q[l, mode={math}] @{}},rowsep=1pt}
Earth's radius&a\sim\qty{e6}{m}\\
Earth's rotation rate&\Omega\sim\qty{e-4}{s^{-1}}\\
Acceleration of gravity&g\sim\qty{9,81}{m.s^{-2}}\\
Sea-level pressure&p\textsubscript{ref}\sim\qty{e5}{kg.m^{-1}.s^{-2}}\\
H\textsubscript{2}O freezing temperature &T\textsubscript{ref}\sim\qty{273}{K}\\
\begin{+array}{colspec={@{} l}, rowsep=1pt, delimiter={left=.,right=\rbrace}}
{Equator-pole (tropospheric vertical)\\
potential temperature difference}
\end{+array}
&\triangle\Theta\sim\qty{40}{K}\\
Dry gas constant&R=\qty{287}{m^2.s^{-2}.K}\\
Dry isentropic exponent&\gamma\sim\qty{1,4}{}\\
\end{tblr}\\[-1ex]
\caption{Auxiliary quantities}
\begin{tblr}{hline{1,Z},colspec={@{} l Q[l, mode={math}] @{}},rowsep=1pt}
Sea-level air density&\rho\textsubscript{ref}=\frac{p\textsubscript{ref}}{RT\textsubscript{ref}}\sim\qty{1,25}{kg.m^{-3}}\\
Density scale height&h\textsubscript{sc}=\frac{\gamma p\textsubscript{ref}}{g \rho\textsubscript{ref}}\sim\qty{11}{km}\\
Sound speed&c\textsubscript{ref}=\sqrt{\frac{\gamma p\textsubscript{ref}}{\rho\textsubscript{ref}}}\sim\qty{330}{m.s^{-1}}\\
Internal wave speed&c\textsubscript{int}=\sqrt{gh\textsubscript{sc}\frac{\triangle\Theta}{T\textsubscript{ref}}}\sim\qty{110}{m.s^{-1}}\\
Thermal wind velocity&u\textsubscript{ref}=\frac{2}{\pi}\frac{gh_{sc}}{\Omega a}\frac{\triangle\Theta}{T\textsubscript{ref}}\sim\qty{12}{m.s^{-1}}\\
\end{tblr}
% \end{+array}
\end{+array}
\qquad
\begin{minipage}{0.34\linewidth}
\caption{Physically distinguished scales}
\vspace{-1ex}
\begin{tblr}{hline{1,Z},colspec={@{} l Q[l, mode={math}] @{}},rowsep=1pt}
Planetary scale&L\textsubscript{p}=\frac{\pi}{2}{a}\sim\qty{10000}{km}\\
Obukhov radius&L\textsubscript{Ob}=\frac{c\textsubscript{ref}}{\Omega}\sim\qty{3300}{km}\\
Synoptic scale&L\textsubscript{Ro}=\frac{c\textsubscript{int}}{\Omega}\sim\qty{1100}{km}\\
Meso-$\beta$ scale&L\textsubscript{Meso}\frac{u\textsubscript{ref}}{\Omega}\sim\qty{150}{km}\\
Meso-$\gamma$ scale&h\textsubscript{sc}=\frac{\gamma p\textsubscript{ref}}{g \rho\textsubscript{ref}}\sim\qty{11}{km}\\
\end{tblr}
\end{minipage}
\end{table}
\end{frame}
%\end{section}
\end{document}