格式化长方程式

格式化长方程式

我有以下一组方程式:

\documentclass[10pt, aspectratio=169]{beamer}
\usefonttheme{serif}

\usepackage{booktabs} % tables
\usepackage{amsmath} % align, 
\usepackage{siunitx} % units, numbers
\usepackage{mathtools}
\usepackage[singlelinecheck=false]{caption}
\usepackage{tabularray}
\UseTblrLibrary{amsmath,booktabs}

\setbeamerfont{caption}{size=\footnotesize}
\setbeamertemplate{caption label separator}[space]

\begin{document}
    \begin{frame}{}
    \begin{align}
        &(\partial_t+\mathbf{v}_{\parallel}\cdot\nabla_{\parallel}+\omega\partial_z)\mathbf{v}_{\parallel}+\epsilon(2\mathbf{\Omega}\times\mathbf{v})_{\parallel}+\tfrac{\Theta}{\epsilon}\nabla_{\parallel}\Tilde{\pi}=\mathbf{Q_v}\\
        \begin{split}
            &[\epsilon\partial_{t_m}+\epsilon^2\partial_{t_s}+\epsilon\mathbf{v}_{\parallel}\cdot\nabla_m+\epsilon^2\mathbf{v}_{\parallel}\cdot\nabla_s+\epsilon(\alpha_{\omega}\omega_1+\epsilon\omega_2+\dots)\partial_z]\mathbf{v}_{\parallel}\\
            &+\epsilon(2\mathbf{\Omega}\times\mathbf{v})_{\parallel}+(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_m\Tilde{\pi}+\epsilon(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_s\Tilde{\pi}=\mathbf{Q}_{\parallel}\\
        \end{split}\\
        \begin{split}
            &[\epsilon\partial_{t_m}+\epsilon^2\partial_{t_s}+\epsilon(\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\cdot\nabla_m+\epsilon^2(\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\\
            &\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\cdot\nabla_s+\epsilon(\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\partial_z](\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\\
            &\epsilon[(2\mathbf{\Omega}\times\mathbf{v})_{\parallel,0}+(2\mathbf{\Omega}\times\mathbf{v})_{\parallel,1}](1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_m\Tilde{\pi}+\epsilon(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_s\Tilde{\pi}=\mathbf{Q}_{\parallel}
        \end{split}
    \end{align}
    \end{frame}
\end{document}

这张幻灯片不太好。你能帮我格式化一下方程组吗?

首先,我想:

(A)增加每个方程之间的间距

(二)在方程式之间插入一行文本

答案1

  • (a)增加每个方程之间的间距

    \\有一个可选参数,例如\\[2cm],你可以使用它来添加额外的空间

  • (b)在方程式之间插入一行文字

    你可以用它\intertext{...}来在方程式之间添加一些文字


\documentclass[10pt, aspectratio=169]{beamer}
\usefonttheme{serif}

\usepackage{booktabs} % tables
%\usepackage{amsmath} % align, 
\usepackage{siunitx} % units, numbers
\usepackage{mathtools}
\usepackage[singlelinecheck=false]{caption}
\usepackage{tabularray}
\UseTblrLibrary{amsmath,booktabs}

\setbeamerfont{caption}{size=\footnotesize}
\setbeamertemplate{caption label separator}[space]

\begin{document}
    \begin{frame}
    \begin{align}
        &(\partial_t+\mathbf{v}_{\parallel}\cdot\nabla_{\parallel}+\omega\partial_z)\mathbf{v}_{\parallel}+\epsilon(2\mathbf{\Omega}\times\mathbf{v})_{\parallel}+\tfrac{\Theta}{\epsilon}\nabla_{\parallel}\Tilde{\pi}=\mathbf{Q_v}\\
        \intertext{word or phrase}
        \begin{split}
            &[\epsilon\partial_{t_m}+\epsilon^2\partial_{t_s}+\epsilon\mathbf{v}_{\parallel}\cdot\nabla_m+\epsilon^2\mathbf{v}_{\parallel}\cdot\nabla_s+\epsilon(\alpha_{\omega}\omega_1+\epsilon\omega_2+\dots)\partial_z]\mathbf{v}_{\parallel}\\
            &+\epsilon(2\mathbf{\Omega}\times\mathbf{v})_{\parallel}+(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_m\Tilde{\pi}+\epsilon(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_s\Tilde{\pi}=\mathbf{Q}_{\parallel}\\
        \end{split}\\[2cm]
        \begin{split}
            &[\epsilon\partial_{t_m}+\epsilon^2\partial_{t_s}+\epsilon(\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\cdot\nabla_m+\epsilon^2(\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\\
            &\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\cdot\nabla_s+\epsilon(\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\partial_z](\mathbf{v}_{\parallel,0}+\epsilon\mathbf{v}_{\parallel,1}+\epsilon^2\mathbf{v}_{\parallel,2}+\dots)\\
            &\epsilon[(2\mathbf{\Omega}\times\mathbf{v})_{\parallel,0}+(2\mathbf{\Omega}\times\mathbf{v})_{\parallel,1}](1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_m\Tilde{\pi}+\epsilon(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_s\Tilde{\pi}=\mathbf{Q}_{\parallel}
        \end{split}
    \end{align}
    \end{frame}
\end{document}

在此处输入图片描述

答案2

一些建议,不分先后顺序:使用\intertext指令在行之间插入文本行;\nabla通过\!(负薄空间)指令将下标项与符号紧密贴合;使用较小版本的\parallel;使用aligned环境而不是split环境;在涉及二元运算的表达式末尾使用\dotsb而不是。\dots

在此处输入图片描述

\documentclass[10pt, aspectratio=169]{beamer}
\usefonttheme{serif}
\usepackage{bm}
\newcommand\parl{%
   \!\scriptscriptstyle\parallel} % reduce size of \parallel symbol

\begin{document}
\begin{frame}{}

\begin{align}
        &(\partial_t+\mathbf{v}_{\parl}\cdot\nabla_{\parl}+\omega\partial_z)\mathbf{v}_{\parl}
             +\epsilon(2\bm{\Omega}\times\mathbf{v})_{\parl}+\tfrac{\Theta}{\epsilon}\nabla_{\parl}\Tilde{\pi}
             =\mathbf{Q}_{\mathbf{v}} \\
        \intertext{Hello, World.}  
        &\begin{aligned}[b]
            &\bigl[\epsilon\partial_{t_m}+\epsilon^2\partial_{t_s}+\epsilon\mathbf{v}_{\parl}\cdot\nabla_{\!m}
             +\epsilon^2\mathbf{v}_{\parl}\cdot\nabla_{\!s}
             +\epsilon(\alpha_{\omega}\omega_1+\epsilon\omega_2+\dotsb)\partial_z\bigr]\mathbf{v}_{\parl}\\
            &\quad+\epsilon(2\bm{\Omega}\times\mathbf{v})_{\parl}+(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_{\!m}\Tilde{\pi}
             +\epsilon(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_{\!s}\Tilde{\pi}
             =\mathbf{Q}_{\,\parl}
        \end{aligned}\\
        \intertext{Hello, World.}
        &\begin{aligned}[b]
            &[\epsilon\partial_{t_m}+\epsilon^2\partial_{t_s}+\epsilon(\mathbf{v}_{\parl,0}
             +\epsilon\mathbf{v}_{\parl,1}+\epsilon^2\mathbf{v}_{\parl,2}+\dotsb)\cdot\nabla_{\!m}
             +\epsilon^2(\mathbf{v}_{\parl,0}+\epsilon\mathbf{v}_{\parl,1}\\
            &\quad+\epsilon^2\mathbf{v}_{\parl,2}+\dotsb)\cdot\nabla_{\!s}+\epsilon(\mathbf{v}_{\parl,0}
             +\epsilon\mathbf{v}_{\parl,1}+\epsilon^2\mathbf{v}_{\parl,2}+\dotsb)\partial_z](\mathbf{v}_{\parl,0}
             +\epsilon\mathbf{v}_{\parl,1}+\epsilon^2\mathbf{v}_{\parl,2}+\dotsb)\\
            &\quad\times\epsilon[(2\bm{\Omega}\times\mathbf{v})_{\parl,0}
             +(2\bm{\Omega}\times\mathbf{v})_{\parl,1}](1+\epsilon\bar{\Theta}
             +\epsilon^2\Tilde{\Theta})\nabla_{\!m}\Tilde{\pi}
             +\epsilon(1+\epsilon\bar{\Theta}+\epsilon^2\Tilde{\Theta})\nabla_{\!s}\Tilde{\pi}
             =\mathbf{Q}_{\,\parl}
        \end{aligned}
\end{align}
    
\end{frame}
\end{document} 

相关内容