我想写一个具有两个等价形式的方程,所以我想将它们并排写出。因此,我使用以下方法进行操作
\[
\begin{aligned}
(X',Y',Z')=\begin{cases}
\left(X,2Y,\dfrac{Z}{2}\right), & \mbox{if } ~0\leq X<\dfrac{1}{2}, ~0\leq Y<\dfrac{1}{2} \\
\left(2X,2Y-1,\dfrac{Z}{2}+\dfrac{1}{2}\right), & \mbox{if } ~0\leq X<\dfrac{1}{2}, ~\dfrac{1}{2}\leq Y<1\\
\left(X-1,2Y,\dfrac{Z}{2}+\dfrac{1}{4}\right), & \mbox{if } ~\dfrac{1}{2}\leq X<1, ~0\leq Y<\dfrac{1}{2}\\
\left(2X-1,2Y-1,\dfrac{Z}{2}+\dfrac{3}{4}\right), & \mbox{if } ~\dfrac{1}{2}\leq X<1, ~\dfrac{1}{2}\leq Y<1\\
\end{cases}
\end{aligned}
\implies
\begin{aligned}
X'=\begin{cases}
\text{mod}(2X,N), & \mbox{if }~Z+1\equiv (3\vee 1)\text{mod}~4\\
\text{mod}(2X,N)+1, & \mbox{if }~Z+1\equiv (2\vee 0)\text{mod}4\\
\end{cases}\\
Y'=\begin{cases}
\text{mod}(2Y,N), & \mbox{if }~Z+1\equiv (2\vee 1)\text{mod}4\\
\text{mod}(2Y,N)+1, & \mbox{if }~Z+1\equiv (3\vee 0)\text{mod}4\\
\end{cases}\\
Z'=\begin{cases}
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor,~~~~~~~~~~~~~,& \mbox{if}~0\leq X<\dfrac{N}{2}-1~\text{and}~ 0\leq Y<\dfrac{N}{2}-1 \\
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor+\dfrac{2N}{4},& \mbox{if}~0\leq X<\dfrac{N}{2}-1~\text{and}~\dfrac{N}{2}-1<Y \\
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor+\dfrac{N}{4}, & \mbox{if}~\dfrac{N}{2}+1<X~\text{and}~ 0\leq Y<\dfrac{N}{2}-1 \\
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor+\dfrac{3N}{4},& \mbox{if}~\dfrac{N}{2}-1<X~\text{and}~ \dfrac{N}{2}-1<Y \\
\end{cases}
\end{aligned}
\]
它给出输出
但如您所见,它没有正确对齐,不适合页面,应该如何解决?有人可以解决这个问题吗?
答案1
我看不出有什么办法可以将这两个大块并排放置。为什么不将一个块放在另一个块的上方呢?
\documentclass{article}
\usepackage{amsmath,mathtools}
\usepackage{showframe}
\DeclareMathOperator{\omod}{mod}
\begin{document}
\begingroup
\setlength{\multlinegap}{0pt}
\begin{multline*}
(X',Y',Z')=
\begin{dcases}
\left(X,2Y,\frac{Z}{2}\right),
& \text{if } 0\leq X<\frac{1}{2},\ 0\leq Y<\frac{1}{2} \\
\left(2X,2Y-1,\frac{Z}{2}+\frac{1}{2}\right),
& \text{if } 0\leq X<\frac{1}{2},\ \frac{1}{2}\leq Y<1 \\
\left(X-1,2Y,\frac{Z}{2}+\frac{1}{4}\right),
& \text{if } \frac{1}{2}\leq X<1,\ 0\leq Y<\frac{1}{2} \\
\left(2X-1,2Y-1,\frac{Z}{2}+\frac{3}{4}\right),
& \text{if } \frac{1}{2}\leq X<1,\ \frac{1}{2}\leq Y<1\\
\end{dcases}
\\
\implies\left\{
\begin{aligned}
X'&=
\begin{dcases}
\omod(2X,N), & \text{if } Z+1\equiv (3\vee 1)\pmod{4}\\
\omod(2X,N)+1, & \text{if } Z+1\equiv (2\vee 0)\pmod{4}\\
\end{dcases}
\\
Y'&=
\begin{dcases}
\omod(2Y,N), & \text{if } Z+1\equiv (2\vee 1)\pmod{4}\\
\omod(2Y,N)+1, & \text{if } Z+1\equiv (3\vee 0)\pmod{4}\\
\end{dcases}
\\
Z'&=
\begin{dcases}
\biggl\lfloor\frac{Z}{4}\biggr\rfloor,
& \text{if } 0\leq X<\frac{N}{2}-1 \text{ and } 0\leq Y<\frac{N}{2}-1 \\
\biggl\lfloor\frac{Z}{4}\biggr\rfloor+\frac{2N}{4},
& \text{if } 0\leq X<\frac{N}{2}-1 \text{ and } \frac{N}{2}-1<Y \\
\biggl\lfloor\frac{Z}{4}\biggr\rfloor+\frac{N}{4},
& \text{if } \frac{N}{2}+1<X \text{ and } 0\leq Y<\frac{N}{2}-1 \\
\biggl\lfloor\frac{Z}{4}\biggr\rfloor+\frac{3N}{4},
& \text{if } \frac{N}{2}-1<X \text{ and } \frac{N}{2}-1<Y \\
\end{dcases}
\end{aligned}
\right.
\end{multline*}
\endgroup
\end{document}
我在本地将其设置\multlinegap
为零,以便用尽所有可用空间。我认为,添加括号可以明确含义。
请注意,这\usepackage{showframe}
仅用于显示文本块的边距,请将其从生产版本中删除。
我也做了一些改变。
- 对于 mod 运算符,我定义了一个合适的命令(
\text{mod}
是错误的) - 对于表示一致性模数的 mod,使用
\pmod
\bigg\lfloor
并且\bigg\rfloor
应该是\biggl\lfloor
和\biggr\rfloor
- 全部
~
消失了 - 不要
\dfrac
一直使用,最好使用dcases
它来处理垂直间距
答案2
由于纵向排列的方程式无法放在一行中,并且难以阅读,因此我建议横向排列。下面我给出了一个输出示例。要修复对齐问题,只需在方程式右侧的&
前面添加一个。X',Y',Z'
\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{pdflscape}
\usepackage{geometry}
\begin{document}
\newgeometry{margin=1cm}
\begin{landscape}
\[
\begin{aligned}
(X',Y',Z')=\begin{cases}
\left(X,2Y,\dfrac{Z}{2}\right), & \mbox{if } ~0\leq X<\dfrac{1}{2}, ~0\leq Y<\dfrac{1}{2} \\
\left(2X,2Y-1,\dfrac{Z}{2}+\dfrac{1}{2}\right), & \mbox{if } ~0\leq X<\dfrac{1}{2}, ~\dfrac{1}{2}\leq Y<1\\
\left(X-1,2Y,\dfrac{Z}{2}+\dfrac{1}{4}\right), & \mbox{if } ~\dfrac{1}{2}\leq X<1, ~0\leq Y<\dfrac{1}{2}\\
\left(2X-1,2Y-1,\dfrac{Z}{2}+\dfrac{3}{4}\right), & \mbox{if } ~\dfrac{1}{2}\leq X<1, ~\dfrac{1}{2}\leq Y<1\\
\end{cases}
\end{aligned}
\hspace{.5cm}
\implies
\hspace{.5cm}
\begin{aligned}
& X'=\begin{cases}
\text{mod}(2X,N), & \mbox{if }~Z+1\equiv (3\vee 1)\text{mod}~4\\
\text{mod}(2X,N)+1, & \mbox{if }~Z+1\equiv (2\vee 0)\text{mod}4\\
\end{cases}\\
& Y'=\begin{cases}
\text{mod}(2Y,N), & \mbox{if }~Z+1\equiv (2\vee 1)\text{mod}4\\
\text{mod}(2Y,N)+1, & \mbox{if }~Z+1\equiv (3\vee 0)\text{mod}4\\
\end{cases}\\
& Z'=\begin{cases}
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor,~~~~~~~~~~~~~,& \mbox{if}~0\leq X<\dfrac{N}{2}-1~\text{and}~ 0\leq Y<\dfrac{N}{2}-1 \\
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor+\dfrac{2N}{4},& \mbox{if}~0\leq X<\dfrac{N}{2}-1~\text{and}~\dfrac{N}{2}-1<Y \\
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor+\dfrac{N}{4}, & \mbox{if}~\dfrac{N}{2}+1<X~\text{and}~ 0\leq Y<\dfrac{N}{2}-1 \\
\bigg\lfloor\dfrac{Z}{4}\bigg\rfloor+\dfrac{3N}{4},& \mbox{if}~\dfrac{N}{2}-1<X~\text{and}~ \dfrac{N}{2}-1<Y \\
\end{cases}
\end{aligned}
\]
\end{landscape}
\restoregeometry
\end{document}
答案3
这是一个不使用案例并转换为区间符号的解决方案。请注意X' = ...
,Y' = ...
和Z' = ...
几乎与 完美对齐(X',Y',Z')
\documentclass{article}
\usepackage{amsmath}
\usepackage{showframe}
\newcommand{\range}[3]{\ensuremath{#1 \in \left[#2, ~#3\right)}}% Interval notation [...)
\newcommand{\infRange}[2]{\ensuremath{#1 \in \left(-\infty, ~#2\right)}}% Interval notation (...)
\newcommand{\MOD}[2]{\ensuremath{\text{mod}(#1, #2)}}
\newcommand{\tuple}[3]{\ensuremath{\left(#1, #2, #3\right)\hspace*{-0.75ex},}}% (a, b, c)
\newcommand{\floor}[2]{\ensuremath{\bigg\lfloor\dfrac{#1}{#2}\bigg\rfloor}}% floor(a/b)
\begin{document}
{\def\arraystretch{2}
\begin{align*}
(X',Y',Z')=\left\{
\begin{array}{*{15}{l}}
\tuple{X} {2Y} {\dfrac{Z}{2}} & \text{if } \range{X}{0}{\dfrac{1}{2}} \text{and } \range{Y}{0}{\dfrac{1}{2}}\\
\tuple{2X} {2Y-1} {\dfrac{Z}{2}+\dfrac{1}{2}} & \text{if } \range{X}{0}{\dfrac{1}{2}} \text{and } \range{Y}{\dfrac{1}{2}}{1}\\
\tuple{X} {2Y} {\dfrac{Z}{2}+\dfrac{1}{4}} & \text{if } \range{X}{\dfrac{1}{2}}{1} \text{and } \range{Y}{0}{\dfrac{1}{2}}\\
\tuple{2X-1}{2Y-1} {\dfrac{Z}{2}+\dfrac{3}{4}} & \text{if } \range{X}{\dfrac{1}{2}}{1} \text{and } \range{Y}{\dfrac{1}{2}}{1}\\
\end{array}\right.\hspace*{-1.6pt}
%,%if you want a comma afterwards
\end{align*}
\begin{align*}
\implies
\left\{
\begin{aligned}
X' &= \left\{\begin{array}{*{3}{l}}
\MOD{2X}{N} & \text{if } & Z+1 \equiv (3 \vee 1) (\text{mod }4)\\
\MOD{2X}{N}+1 & \text{if } & Z+1 \equiv (2 \vee 0) (\text{mod }4)\\
\end{array}\right.\\
Y' &= \left\{\begin{array}{*{3}{l}}
\MOD{2Y}{N} & \text{if } & Z+1 \equiv (2\vee 1) (\text{mod }4)\\
\MOD{2Y}{N}+1 & \text{if } & Z+1 \equiv (3 \vee 0) (\text{mod }4)\\
\end{array}\right.\\
Z' &= \left\{\begin{array}{*{3}{l}}
\floor{Z}{4} & \text{if } &\range{X}{0}{\dfrac{N}{2}-1} \text{and } \range{Y}{0}{\dfrac{N}{2}-1}\\
\floor{Z}{4}+\dfrac{2N}{4} & \text{if } &\range{X}{0}{\dfrac{N}{2}-1} \text{and } \infRange{\dfrac{N}{2}-1}{Y}\\
\floor{Z}{4}+\dfrac{N}{4} & \text{if } &\infRange{\dfrac{N}{2}+1}{X} \text{and } \range{Y}{0}{\dfrac{N}{2}-1}\\
\floor{Z}{4}+\dfrac{3N}{4} & \text{if } &\infRange{\dfrac{N}{2}-1}{X} \text{and } \infRange{\dfrac{N}{2}-1}{Y}\\
\end{array}\right.\hspace*{-1.2pt}
\end{aligned}
\right.
\end{align*}
}
\end{document}