如何才能使行号不延续到下alignat
一部分?
代码如下:
\subsubsection*{Answer}
\begin{alignat}{2}
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
\forall x (P(x) \to Q(x)) &\text{ by } (\in) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
(P(x) \to Q(x)) &\text{ by } (\forall -, 1) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
\forall x P(x) &\text{ by } (\in) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
\forall x P(x) &\text{ by } (\forall -, 3) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash Q(u) &\text{ by } (\forall +, 2, 4) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
(\forall x P(x)) \to (\forall y Q(y)) &\text{ by } (\forall +, 5) \\
\forall x (P(x) \to Q(x)) &\vdash (\forall x P(x)) \to (\forall y Q(y))
\end{alignat}
\subsection*{Example 4}
Prove
\[
\exists x (P(x) \lor Q(x)) \vdash
(\exists xP(x)) \lor (\exists xQ(x))
.\]
\subsubsection*{Answer}
\begin{alignat}{2}
P(u) &\vdash \exists P(u) \text{ by } (\in) \\
Q(u) &\vdash \exists Q(u) \text{ by } (\in) \\
P(u) &\vdash \exists xP(x) \text{ by } (\exists +, 1) \\
P(u) &\vdash \exists xP(x) \text{ by } (\exists +, 0) \\
Q(u) &\vdash \exists xQ(x) \\
P(u) &\vdash (\exists x P(x)) \lor (\exists x Q(x)) \\
Q(u) &\vdash (\exists x P(x)) \lor (\exists x Q(x)) \\
(P(u) \lor Q(u)) &\vdash
(\exists xP(x)) \lor (\exists xQ(x)) \text { by } (\forall -, \\
\exists x (P(x) \lor Q(x)) &\vdash
(\exists xP(x)) \lor (\exists xQ(x)) \text { by } (\exists -,
\end{alignat}
\end{document}
但我想要的是每个“答案”部分不是从上一个“答案”部分继续,\begin{alignat}
和之间的任何内容end{alignat}
都应从 #1 开始。
我怎样才能实现这个目标?
答案1
我不会让equation
柜台超载。
\documentclass{article}
\usepackage[leqno]{amsmath}
\newcounter{derivation}
\newenvironment{derivation}
{%
\setcounter{derivation}{\value{equation}}%
\setcounter{equation}{0}%
%\renewcommand{\theHequation}{derivation@\arabic{equation}}% for hyperref
\alignat{2}%
}
{%
\endalignat
\setcounter{equation}{\value{derivation}}%
}
\begin{document}
\subsubsection*{Answer}
\begin{derivation}
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
\forall x (P(x) \to Q(x)) &\text{ by } (\in) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
(P(x) \to Q(x)) &\text{ by } (\forall -, 1) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
\forall x P(x) &\text{ by } (\in) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
\forall x P(x) &\text{ by } (\forall -, 3) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash Q(u) &\text{ by } (\forall +, 2, 4) \\
\forall x (P(x) \to Q(x)), \forall xP(x) &\vdash
(\forall x P(x)) \to (\forall y Q(y)) &\text{ by } (\forall +, 5) \\
\forall x (P(x) \to Q(x)) &\vdash (\forall x P(x)) \to (\forall y Q(y))
\end{derivation}
\subsection*{Example 4}
Prove
\[
\exists x (P(x) \lor Q(x)) \vdash
(\exists xP(x)) \lor (\exists xQ(x))
.\]
\subsubsection*{Answer}
\begin{derivation}
P(u) &\vdash \exists P(u) &\text{ by } (\in) \\
Q(u) &\vdash \exists Q(u) &\text{ by } (\in) \\
P(u) &\vdash \exists xP(x) &\text{ by } (\exists +, 1) \\
P(u) &\vdash \exists xP(x) &\text{ by } (\exists +, 0) \\
Q(u) &\vdash \exists xQ(x) \\
P(u) &\vdash (\exists x P(x)) \lor (\exists x Q(x)) \\
Q(u) &\vdash (\exists x P(x)) \lor (\exists x Q(x)) \\
(P(u) \lor Q(u)) &\vdash
(\exists xP(x)) \lor (\exists xQ(x)) &\text { by } (\forall -, \\
\exists x (P(x) \lor Q(x)) &\vdash
(\exists xP(x)) \lor (\exists xQ(x)) &\text { by } (\exists -,
\end{derivation}
\end{document}