我有一个 Debian 盒子,想把它设置为路由器,还有一个 Ubuntu 盒子,用作客户端。
我的问题是,当 Ubuntu 客户端尝试 ping 互联网上的服务器时,所有数据包都会丢失(不过,正如您在下面看到的,他们似乎可以毫无问题地进入服务器并返回)。
我在 Ubuntu Box 中执行此操作:
# ping -I eth1 my.remote-server.com
PING my.remote-server.com (X.X.X.X) from 10.1.1.12 eth1: 56(84) bytes of data.
^C
--- my.remote-server.com ping statistics ---
13 packets transmitted, 0 received, 100% packet loss, time 12094ms
(为了保护隐私,我更改了远程服务器的名称和 IP)。
从 Debian 路由器上我看到了这一点:
# tcpdump -i eth1 -qtln icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 7, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 8, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 8, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 9, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 9, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 10, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 10, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 11, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 11, length 64
^C
9 packets captured
9 packets received by filter
0 packets dropped by kernel
# tcpdump -i eth2 -qtln icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth2, link-type EN10MB (Ethernet), capture size 65535 bytes
IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 213, length 64
IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 213, length 64
IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 214, length 64
IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 214, length 64
IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 215, length 64
IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 215, length 64
IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 216, length 64
IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 216, length 64
IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 217, length 64
IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 217, length 64
^C
10 packets captured
10 packets received by filter
0 packets dropped by kernel
在远程服务器上我看到了这个:
# tcpdump -i eth0 -qtln icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 1, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 1, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 2, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 2, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 3, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 3, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 4, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 4, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 5, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 5, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 6, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 6, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 7, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 7, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 8, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 8, length 64
IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 9, length 64
IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 9, length 64
18 packets captured
228 packets received by filter
92 packets dropped by kernel
这里“XXXX”是我的远程服务器的 IP,“YYYY”是我的本地网络的公共 IP。因此,我的理解是 ping 数据包从 Ubuntu 机器 (10.1.1.12) 发出,到达路由器 (10.1.1.1),再从那里到达下一个路由器 (192.168.1.1),然后到达远程服务器 (XXXX)。然后它们一路返回到 Debian 路由器,但再也没有回到 Ubuntu 机器。
我错过了什么?
以下是 Debian 路由器设置:
# ifconfig
eth1 Link encap:Ethernet HWaddr 94:0c:6d:82:0d:98
inet addr:10.1.1.1 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::960c:6dff:fe82:d98/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:105761 errors:0 dropped:0 overruns:0 frame:0
TX packets:48944 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:40298768 (38.4 MiB) TX bytes:44831595 (42.7 MiB)
Interrupt:19 Base address:0x6000
eth2 Link encap:Ethernet HWaddr 6c:f0:49:a4:47:38
inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::6ef0:49ff:fea4:4738/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:38335992 errors:0 dropped:0 overruns:0 frame:0
TX packets:37097705 errors:0 dropped:0 overruns:0 carrier:1
collisions:0 txqueuelen:1000
RX bytes:4260680226 (3.9 GiB) TX bytes:3759806551 (3.5 GiB)
Interrupt:27
eth3 Link encap:Ethernet HWaddr 94:0c:6d:82:c8:72
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:20 Base address:0x2000
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:3408 errors:0 dropped:0 overruns:0 frame:0
TX packets:3408 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:358445 (350.0 KiB) TX bytes:358445 (350.0 KiB)
tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
inet addr:10.8.0.1 P-t-P:10.8.0.2 Mask:255.255.255.255
UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1
RX packets:2767779 errors:0 dropped:0 overruns:0 frame:0
TX packets:1569477 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:3609469393 (3.3 GiB) TX bytes:96113978 (91.6 MiB)
# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.8.0.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0
127.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 lo
10.8.0.0 10.8.0.2 255.255.255.0 UG 0 0 0 tun0
192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth2
10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth2
# arp -n
# Note: Here I have changed all the different MACs except the ones corresponding to the Ubuntu box (on 10.1.1.12 and 192.168.1.12)
Address HWtype HWaddress Flags Mask Iface
192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.102 ether NN:NN:NN:NN:NN:NN C eth2
10.1.1.12 ether 00:1e:67:15:2b:f0 C eth1
192.168.1.86 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.2 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.40 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.12 ether 00:1e:67:15:2b:f1 C eth2
192.168.1.77 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.41 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth2
192.168.1.123 ether NN:NN:NN:NN:NN:NN C eth2
# iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
# iptables -L -n -t nat
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 10.1.1.0/24 !10.1.1.0/24
MASQUERADE all -- !10.1.1.0/24 10.1.1.0/24
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
这是 Ubuntu 盒子:
# ifconfig
eth0 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f1
inet addr:192.168.1.12 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21e:67ff:fe15:2bf1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:28785139 errors:0 dropped:0 overruns:0 frame:0
TX packets:19050735 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:32068182803 (32.0 GB) TX bytes:6061333280 (6.0 GB)
Interrupt:16 Memory:b1a00000-b1a20000
eth1 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f0
inet addr:10.1.1.12 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::21e:67ff:fe15:2bf0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:285086 errors:0 dropped:0 overruns:0 frame:0
TX packets:12719 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:30817249 (30.8 MB) TX bytes:2153228 (2.1 MB)
Interrupt:16 Memory:b1900000-b1920000
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:86048 errors:0 dropped:0 overruns:0 frame:0
TX packets:86048 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:11426538 (11.4 MB) TX bytes:11426538 (11.4 MB)
# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0
0.0.0.0 10.1.1.1 0.0.0.0 UG 100 0 0 eth1
10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1
10.8.0.0 192.168.1.10 255.255.255.0 UG 0 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0
192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0
# arp -n
# Note: Here I have changed all the different MACs except the ones corresponding to the Debian box (on 10.1.1.1 and 192.168.1.10)
Address HWtype HWaddress Flags Mask Iface
192.168.1.70 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.97 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.103 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.13 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.120 (incomplete) eth0
192.168.1.111 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.51 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.102 (incomplete) eth0
192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.74 (incomplete) eth0
192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.121 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.71 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.88 (incomplete) eth0
192.168.1.82 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.98 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.73 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.11 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.85 (incomplete) eth0
192.168.1.112 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.81 ether NN:NN:NN:NN:NN:NN C eth0
10.1.1.1 ether 94:0c:6d:82:0d:98 C eth1
192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.10 ether 6c:f0:49:a4:47:38 C eth0
192.168.1.86 (incomplete) eth0
192.168.1.119 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth0
192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth1
192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth0
# iptables -L -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain FORWARD (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
# iptables -L -n -t nat
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
Chain INPUT (policy ACCEPT)
target prot opt source destination
Chain OUTPUT (policy ACCEPT)
target prot opt source destination
Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
编辑:根据 Patrick 的建议,我在 Ubuntu 机器上执行了 tcpdump,看到了以下信息:
# tcpdump -i eth1 -qtln icmp
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 1, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 1, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 2, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 2, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 3, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 3, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 4, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 4, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 5, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 5, length 64
IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 6, length 64
IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 6, length 64
^C
12 packets captured
12 packets received by filter
0 packets dropped by kernel
所以问题是:如果所有数据包似乎都在来来去去,为什么 ping 会报告 100% 数据包丢失?
答案1
根据您在评论中提出的问题:
在远程服务器上,我可以看到请求和回复。但在 Debian 路由器上,我什么都看不到……在所有接口上都看不到!我猜现在 Ubuntu 盒子正在直接与 192.168.1.1 上的路由器通信,尽管它使用 IP 10.1.1.12 发送请求,所以它无法路由回来。但为什么呢?
从 Ubuntu 服务器:
# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 <---
0.0.0.0 10.1.1.1 0.0.0.0 UG 100 0 0 eth1
捕获此路由表时,通过eth0
指向 192.168.1.1 的路由器(即不是 Debian 机器),您有一个较低的度量默认值。始终首先遵循较低的度量默认值,这意味着 Ubuntu 希望将所有非连接流量直接发送到 192.168.1.1。
当您有空闲时间时,请使用以下命令删除该默认设置:
route del default gw 192.168.1.1 dev eth0
我仍在为更大的问题而烦恼(原始嗅探器跟踪显示 Ubuntu:eth1 上有 ping 回复,但操作系统不接受任何 ping)。您能否从 Ubuntu:eth1 执行 ping 操作并同时在 Debian:eth2 上捕获,以演示在您强制 Ubuntu 再次通过 Debian 发送所有流量后 NAT 发生了什么?
答案2
你检查过吗反向路径过滤在 Ubuntu 机器上启用了吗?
这是一个 sysctl 设置(net.ipv4.conf.all.rp_filter
),如果源地址来自“错误”的接口(即不是内核路由到的接口),它将过滤传入的数据包
您也可以尝试net.ipv4.conf.all.log_martians=1
看看发生了什么。
答案3
实现此功能的关键是为不同的接口创建单独的路由表,并告诉网络堆栈使用这些路由表而不是默认路由表。
在你的情况下这应该可以ping -I eth2 8.8.8.8
工作:
# register the 'foo' table name and give it id 1
echo '1 foo' >> /etc/iproute2/rt_tables
# setup routing table 'foo'
ip route add 192.168.1.0/24 dev eth2 src 192.168.1.10 table foo
ip route add default via 192.168.1.1 table foo
# use routing table 'foo' for address 192.168.1.10
ip rule add from 192.168.1.10 table foo
有关多个上行链路路由的更多信息,请参阅 LARTC HOWTO: http://lartc.org/howto/lartc.rpdb.multiple-links.html
答案4
您需要配置 NAT。
在典型配置中,本地网络使用指定的“私有”IP 地址子网之一。该网络上的路由器在该地址空间中有一个私有地址。路由器还通过 Internet 服务提供商分配的“公共”地址连接到 Internet。当流量从本地网络传输到 Internet 时,每个数据包中的源地址都会从私有地址即时转换为公共地址。路由器会跟踪有关每个活动连接的基本数据(特别是目标地址和端口)。当回复返回路由器时,它会使用在出站阶段存储的连接跟踪数据来确定将回复转发到的内部网络上的私有地址。