我正在试验Linux如何分配和保护内存。
对于我的一些实验,我用 C 创建了一个小程序:
#include <stdio.h>
int gv=10;
int main(){
char *v=(char*)0x601000;//0x601030
printf("gv=%p\n", &gv);
scanf("%s", v);
printf("You gave=%s\n", v);
}
编译后(部分relro),readelf -t a.out
返回:
There are 30 section headers, starting at offset 0x1a18:
Section Headers:
[Nr] Name
Type Address Offset Link
Size EntSize Info Align
Flags
[ 0]
NULL NULL 0000000000000000 0000000000000000 0
0000000000000000 0000000000000000 0 0
[0000000000000000]:
[ 1] .interp
PROGBITS PROGBITS 0000000000400238 0000000000000238 0
000000000000001c 0000000000000000 0 1
[0000000000000002]: ALLOC
[ 2] .note.ABI-tag
NOTE NOTE 0000000000400254 0000000000000254 0
0000000000000020 0000000000000000 0 4
[0000000000000002]: ALLOC
[ 3] .note.gnu.build-id
NOTE NOTE 0000000000400274 0000000000000274 0
0000000000000024 0000000000000000 0 4
[0000000000000002]: ALLOC
[ 4] .gnu.hash
GNU_HASH GNU_HASH 0000000000400298 0000000000000298 5
000000000000001c 0000000000000000 0 8
[0000000000000002]: ALLOC
[ 5] .dynsym
DYNSYM DYNSYM 00000000004002b8 00000000000002b8 6
0000000000000078 0000000000000018 1 8
[0000000000000002]: ALLOC
[ 6] .dynstr
STRTAB STRTAB 0000000000400330 0000000000000330 0
0000000000000058 0000000000000000 0 1
[0000000000000002]: ALLOC
[ 7] .gnu.version
VERSYM VERSYM 0000000000400388 0000000000000388 5
000000000000000a 0000000000000002 0 2
[0000000000000002]: ALLOC
[ 8] .gnu.version_r
VERNEED VERNEED 0000000000400398 0000000000000398 6
0000000000000030 0000000000000000 1 8
[0000000000000002]: ALLOC
[ 9] .rela.dyn
RELA RELA 00000000004003c8 00000000000003c8 5
0000000000000018 0000000000000018 0 8
[0000000000000002]: ALLOC
[10] .rela.plt
RELA RELA 00000000004003e0 00000000000003e0 5
0000000000000060 0000000000000018 12 8
[0000000000000042]: ALLOC, INFO LINK
[11] .init
PROGBITS PROGBITS 0000000000400440 0000000000000440 0
000000000000001a 0000000000000000 0 4
[0000000000000006]: ALLOC, EXEC
[12] .plt
PROGBITS PROGBITS 0000000000400460 0000000000000460 0
0000000000000050 0000000000000010 0 16
[0000000000000006]: ALLOC, EXEC
[13] .text
PROGBITS PROGBITS 00000000004004b0 00000000000004b0 0
00000000000001b2 0000000000000000 0 16
[0000000000000006]: ALLOC, EXEC
[14] .fini
PROGBITS PROGBITS 0000000000400664 0000000000000664 0
0000000000000009 0000000000000000 0 4
[0000000000000006]: ALLOC, EXEC
[15] .rodata
PROGBITS PROGBITS 0000000000400670 0000000000000670 0
0000000000000029 0000000000000000 0 8
[0000000000000002]: ALLOC
[16] .eh_frame_hdr
PROGBITS PROGBITS 000000000040069c 000000000000069c 0
0000000000000034 0000000000000000 0 4
[0000000000000002]: ALLOC
[17] .eh_frame
PROGBITS PROGBITS 00000000004006d0 00000000000006d0 0
00000000000000f4 0000000000000000 0 8
[0000000000000002]: ALLOC
[18] .init_array
INIT_ARRAY INIT_ARRAY 0000000000600e10 0000000000000e10 0
0000000000000008 0000000000000000 0 8
[0000000000000003]: WRITE, ALLOC
[19] .fini_array
FINI_ARRAY FINI_ARRAY 0000000000600e18 0000000000000e18 0
0000000000000008 0000000000000000 0 8
[0000000000000003]: WRITE, ALLOC
[20] .jcr
PROGBITS PROGBITS 0000000000600e20 0000000000000e20 0
0000000000000008 0000000000000000 0 8
[0000000000000003]: WRITE, ALLOC
[21] .dynamic
DYNAMIC DYNAMIC 0000000000600e28 0000000000000e28 6
00000000000001d0 0000000000000010 0 8
[0000000000000003]: WRITE, ALLOC
[22] .got
PROGBITS PROGBITS 0000000000600ff8 0000000000000ff8 0
0000000000000008 0000000000000008 0 8
[0000000000000003]: WRITE, ALLOC
[23] .got.plt
PROGBITS PROGBITS 0000000000601000 0000000000001000 0
0000000000000038 0000000000000008 0 8
[0000000000000003]: WRITE, ALLOC
[24] .data
PROGBITS PROGBITS 0000000000601038 0000000000001038 0
0000000000000008 0000000000000000 0 4
[0000000000000003]: WRITE, ALLOC
[25] .bss
NOBITS NOBITS 0000000000601040 0000000000001040 0
0000000000000008 0000000000000000 0 1
[0000000000000003]: WRITE, ALLOC
[26] .comment
PROGBITS PROGBITS 0000000000000000 0000000000001040 0
000000000000002d 0000000000000001 0 1
[0000000000000030]: MERGE, STRINGS
[27] .shstrtab
STRTAB STRTAB 0000000000000000 000000000000106d 0
0000000000000108 0000000000000000 0 1
[0000000000000000]:
[28] .symtab
SYMTAB SYMTAB 0000000000000000 0000000000001178 29
0000000000000648 0000000000000018 45 8
[0000000000000000]:
[29] .strtab
STRTAB STRTAB 0000000000000000 00000000000017c0 0
0000000000000255 0000000000000000 0 1
[0000000000000000]:
和readelf -l a.out
回报:
Elf file type is EXEC (Executable file)
Entry point 0x4004b0
There are 9 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040
0x00000000000001f8 0x00000000000001f8 R E 8
INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238
0x000000000000001c 0x000000000000001c R 1
[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000
0x00000000000007c4 0x00000000000007c4 R E 200000
LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10
0x0000000000000230 0x0000000000000238 RW 200000
DYNAMIC 0x0000000000000e28 0x0000000000600e28 0x0000000000600e28
0x00000000000001d0 0x00000000000001d0 RW 8
NOTE 0x0000000000000254 0x0000000000400254 0x0000000000400254
0x0000000000000044 0x0000000000000044 R 4
GNU_EH_FRAME 0x000000000000069c 0x000000000040069c 0x000000000040069c
0x0000000000000034 0x0000000000000034 R 4
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 10
GNU_RELRO 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10
0x00000000000001f0 0x00000000000001f0 R 1
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss
04 .dynamic
05 .note.ABI-tag .note.gnu.build-id
06 .eh_frame_hdr
07
08 .init_array .fini_array .jcr .dynamic .got
在该程序的一个实例中,当通过 gdb 运行时,/proc/self/maps 返回:
00400000-00401000 r-xp 00000000 00:30f 2262070116 .../a.out
00600000-00601000 r--p 00000000 00:30f 2262070116 .../a.out
00601000-00602000 rw-p 00001000 00:30f 2262070116 .../a.out
7ffff7a18000-7ffff7bd0000 r-xp 00000000 fd:00 137613 /usr/lib64/libc-2.17.so
7ffff7bd0000-7ffff7dd0000 ---p 001b8000 fd:00 137613 /usr/lib64/libc-2.17.so
7ffff7dd0000-7ffff7dd4000 r--p 001b8000 fd:00 137613 /usr/lib64/libc-2.17.so
7ffff7dd4000-7ffff7dd6000 rw-p 001bc000 fd:00 137613 /usr/lib64/libc-2.17.so
7ffff7dd6000-7ffff7ddb000 rw-p 00000000 00:00 0
7ffff7ddb000-7ffff7dfc000 r-xp 00000000 fd:00 137605 /usr/lib64/ld-2.17.so
7ffff7fbd000-7ffff7fc0000 rw-p 00000000 00:00 0
7ffff7ff7000-7ffff7ffa000 rw-p 00000000 00:00 0
7ffff7ffa000-7ffff7ffc000 r-xp 00000000 00:00 0 [vdso]
7ffff7ffc000-7ffff7ffd000 r--p 00021000 fd:00 137605 /usr/lib64/ld-2.17.so
7ffff7ffd000-7ffff7ffe000 rw-p 00022000 fd:00 137605 /usr/lib64/ld-2.17.so
7ffff7ffe000-7ffff7fff000 rw-p 00000000 00:00 0
7ffffffde000-7ffffffff000 rw-p 00000000 00:00 0 [stack]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]
考虑到这一点,我期望 0x601000-0x602000 之间的内存区域是可写的。但是当我运行包含 24 个或更多字符的程序时,它崩溃了v=0x601000
。
当我改成v
0x6010时20然后程序在我输入0x1000后崩溃了-0x20人物。
这种行为如何解释?内存保护不是按页粒度强制执行的吗?看起来 0x601018-0x601020 之间的内存区域在某种程度上是只读的。
我猜问题出在 .got.plt 部分(加载于 0x601000,大小为 0x38)内,但它到底是什么?
编辑:
的输出ld --verbose | fgrep -A 3 -B 3 -i relro
是:
.data.rel.ro : { *(.data.rel.ro.local* .gnu.linkonce.d.rel.ro.local.*) *(.data.rel.ro .data.rel.ro.* .gnu.linkonce.d.rel.ro.*) }
.dynamic : { *(.dynamic) }
.got : { *(.got) *(.igot) }
. = DATA_SEGMENT_RELRO_END (SIZEOF (.got.plt) >= 24 ? 24 : 0, .);
.got.plt : { *(.got.plt) *(.igot.plt) }
.data :
这可能告诉我们 RELRO 与此有关,但是,内存不应该以页面大小粒度进行保护吗?
答案1
.got.plt
对于进行库调用(包括但不限于调用libc
)至关重要。一旦你破坏了该部分,就禁止进行任何 libc 调用。
如果您通过 运行二进制文件gdb
,则不应在 中出现段错误scanf
— 您应该在 中出现段错误printf@plt
,因为无法使用损坏的.got.plt
部分进行动态调用。
您应该仍然能够进行非动态调用和系统调用:
#include <stdio.h>
__asm(
"finish:"
"mov $60, %rax\n"
"mov $42, %rdi\n"
"syscall\n"
);
int gv=10;
int main(){
char *v=(char*)0x601000;//0x601030
printf("gv=%p\n", &gv);
scanf("%s", v);
_Noreturn void finish(void);
finish();
//should exit with 42
printf("You gave=%s\n", v);
}
答案2
我已经找到问题了。通过用垃圾填充该区域,我覆盖了 printf 的 get 条目,该条目的最终调用导致了分段。
所以如果我们将代码修改为:
#include <stdio.h>
int gv=10;
int main(){
char *v=(char*)0x601000;
printf("gv=%p\n", &gv);
scanf("%s", v);
//printf("You gave=%s\n", v);
}
用0x1000个字符填充v应该没有问题(注意\0)
第一篇文章的 RELRO 参考是无关的。