我有一个段落,其中包含文本、内联方程式和居中方程式,我想将所有内容放在页面水平居中的框中。这是一个关键段落,所以我想将其框起来,使其脱颖而出。我只想要一个简单的框:黑色轮廓,白色填充,没有圆角。
我查看了标题类似的问题,但找不到既有用又符合我需求的内容。如果有帮助,请参阅下面我想要放入框中的特定段落:
\documentclass[12pt article]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
Let $a(b) = \left\{ \begin{array}{c l} hi & \mbox{if } t^5 \mbox{ reduced} \\ t & \mbox{otherwise} \end{array} \right.$, $xyz = \left\{ \begin{array}{c l} GH & \mbox{if } tr^{\pi} \mbox{ secluded} \\ x& \mbox{otherwise} \end{array} \right.$, $s = \left\{ \begin{array}{c l} up^{-5} & \mbox{if } t^55 \mbox{ reduced} \\ lo & \mbox{otherwise} \end{array} \right.$. \\ \\
Define the magician $M_n$ recursively, where $M_1 = \bigstar$ and
\begin{center} $ \begin{array}{r} M_{3} = tr(Md) \\ M_{hat} = norbert(2304) \\ Mtri = solution \end{array} $ \end{center}
where $z$ is the smallest integer such that $z \notin \{ 0 \}$. Terminate the magician at $M_{3}$ where $3$ is such that $M_{3}, ... , M_{3}$ have all already appeared in $M_1, ... , M_{t},$ i.e.
\begin{center}
$ Mtr = g, \underbrace{hi, hello, good day}_{\mbox{cousins}}, \underbrace{1,2,3,4,4,5}_{\mbox{enemies of first cousin of } g} , ... \ , M_{3}, M_{3}, M_{3} $
\end{center}
where $i$ is smallest such that $rt \neq z$.
\end{document}
谢谢!我不确定要使用什么标签 - 我欢迎任何更改。
答案1
如果你不需要在框内使用分页符,只需使用表格即可,否则请查看包framed
\documentclass[12pt article]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\begin{center}
\begin{tabular}{|p{0.9\linewidth}|}\hline % or any other width
\rule{0pt}{5ex}% for more vertical space
Let $a(b) = \left\{ \begin{array}{c l} hi & \mbox{if } t^5 \mbox{ reduced} \\ t & \mbox{otherwise} \end{array} \right.$, $xyz = \left\{ \begin{array}{c l} GH & \mbox{if } tr^{\pi} \mbox{ secluded} \\ x& \mbox{otherwise} \end{array} \right.$, $s = \left\{ \begin{array}{c l} up^{-5} & \mbox{if } t^55 \mbox{ reduced} \\ lo & \mbox{otherwise} \end{array} \right.$. \\ \\
Define the magician $M_n$ recursively, where $M_1 = \bigstar$ and
\begin{center} $ \begin{array}{r} M_{3} = tr(Md) \\ M_{hat} = norbert(2304) \\ Mtri = solution \end{array} $ \end{center}
where $z$ is the smallest integer such that $z \notin \{ 0 \}$. Terminate the magician at $M_{3}$ where $3$ is such that $M_{3}, ... , M_{3}$ have all already appeared in $M_1, ... , M_{t},$ i.e.
\begin{center}
$ Mtr = g, \underbrace{hi, hello, good day}_{\mbox{cousins}}, \underbrace{1,2,3,4,4,5}_{\mbox{enemies of first cousin of } g} , ... \ , M_{3}, M_{3}, M_{3} $
\end{center}
where $i$ is smallest such that $rt \neq z$.\\\hline
\end{tabular}
\end{center}
\end{document}
答案2
您还可以使用包裹mdframed
定义自定义环境。这样做的好处是,您可以获得所有固有的灵活性tikz
(如果您使用该framemethod=tikz
选项),并且还可以跨页面边界工作。
笔记:
- 我擅自重新格式化了方程式(但您可以随意根据需要进行调整)。
代码:
\documentclass[12pt article]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{calc}
\usepackage[framemethod=tikz,xcolor=true]{mdframed}
\newmdenv[%
leftmargin=0.5cm,
backgroundcolor=yellow!10,%
roundcorner=5pt,%
tikzsetting={draw=red, line width=2.0pt}%
]{SpecialText}%
\newcommand*{\Format}[1]{\makebox[\widthof{$xyz$}][r]{$#1$}}%
\newcommand*{\PhantomLet}{\mbox{\hphantom{Let }}}%
\begin{document}
\begin{SpecialText}
Let $\Format{a(b)} = \left\{ \begin{array}{c l} hi & \mbox{if } t^5 \mbox{ reduced} \\ t & \mbox{otherwise} \end{array} \right.$,
\smallskip
\PhantomLet $\Format{xyz} = \left\{ \begin{array}{c l} GH & \mbox{if } tr^{\pi} \mbox{ secluded} \\ x& \mbox{otherwise} \end{array} \right.$,
\smallskip
\PhantomLet $\Format{s} = \left\{ \begin{array}{c l} up^{-5} & \mbox{if } t^55 \mbox{ reduced} \\ lo & \mbox{otherwise} \end{array} \right.$. \\ \\
Define the magician $M_n$ recursively, where $M_1 = \bigstar$ and
%
\begin{align*}
M_{3} &= tr(Md) \\
M_{hat} &= norbert(2304) \\
Mtri &= solution
\end{align*}
%
where $z$ is the smallest integer such that $z \notin \{ 0 \}$. Terminate the magician at $M_{3}$ where $3$ is such that $M_{3}, ... , M_{3}$ have all already appeared in $M_1, ... , M_{t},$ i.e.
%
\[
Mtr = g, \underbrace{hi, hello, good day}_{\mbox{cousins}}, \underbrace{1,2,3,4,4,5}_{\mbox{enemies of first cousin of } g} , ... \ , M_{3}, M_{3}, M_{3}
\]
%
where $i$ is smallest such that $rt \neq z$.
\end{SpecialText}
\end{document}
答案3
您可以尝试以下操作:
\documentclass[12pt]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\begin{center}
\fbox{%
\begin{minipage}{.9\textwidth}
Let
\begin{align*}
a(b) &=
\left\{ \begin{array}{@{}c l}
hi & \text{if $t^5$ reduced} \\
t & \text{otherwise}
\end{array} \right.
&
xyz &=
\left\{ \begin{array}{@{}c l}
GH & \text{if $tr^{\pi}$ secluded} \\
x & \text{otherwise}
\end{array} \right.
\\
s &=
\left\{ \begin{array}{@{}c l}
up^{-5} & \text{if $t^{55}$ reduced} \\
lo & \text{otherwise}
\end{array} \right.
\end{align*}
Define the magician $M_n$ recursively, where $M_1 = \bigstar$ and
\begin{align*}
M_{3} &= \textit{tr}(Md) \\
M_{hat} &= \textit{norbert}(2304) \\
Mtri &= \textit{solution}
\end{align*}
where $z$ is the smallest integer such that $z \notin \{ 0 \}$. Terminate the magician at
$M_{3}$ where $3$ is such that $M_{3},\dots, M_{3}$ have all already appeared in $M_1,
\dots, M_{t}$, i.e.,
\[
Mtr = g,
\underbrace{\text{hi, hello, good day}}_{\text{cousins}},
\underbrace{1,2,3,4,4,5}_{\text{enemies of first cousin of $g$}},
\dots , M_{3}, M_{3}, M_{3}
\]
where $i$ is smallest such that $rt \neq z$.
\end{minipage}}% end of \fbox
\end{center}
\end{document}
请仔细查看代码,因为您的代码显示出许多 LaTeX 弱点,特别是在使用\mbox
“多字母标识符”时。
诀窍是\fbox
。minipage
还有其他方法。