在定理环境中,我有一个编号的定理陈述列表。
之后是证明。在证明中,我证明了上面每个指定编号的陈述。
但证明中的顺序可能与定理中的顺序不同。
在证明中最好使用哪种环境?我可以手动写下“1”、“2”,或者用数字标签制作定义列表,或者其他方式。哪种方式最好?
答案1
作为 休斯他在评论中建议,您可以使用enumerate
带有标签\item
s 的环境来构建定理,然后\ref
在证明中使用(这可以保证一致性并避免手动编号可能出现的错误):
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\newtheorem{theorem}{Theorem}
\begin{document}
\begin{theorem}
For a left artin ring $\Lambda$ we have the following.
\begin{enumerate}
\item\label{th:radnil} The radical of $\Lambda$ is nilpotent.
\item\label{th:finsim} There is only a finite number of nonisomorphic simple $\Lambda$-modules.
\item\label{th:leftnoe} $\Lambda$ is left noetherian.
\end{enumerate}
\end{theorem}
\begin{proof}
\ref{th:leftnoe}. Since $\Lambda$ has a finite filtration...\par
\ref{th:radnil}. Let $I$ be an ideal in $\Lambda$...\par
\ref{th:finsim}. If for a $\Lambda$-module $A$ we have...
\end{proof}
\end{document}
使用该enumitem
包,可以定义自定义的列表式环境;在下面的例子中,该thmclaim
环境用作enumerate
环境,但使用粗体标签;在proof
环境内部,description
使用环境来引用声明(从而保持粗体类型的一致使用):
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{enumitem}
\newtheorem{theorem}{Theorem}
\newlist{thmclaim}{enumerate}{1}
\setlist[thmclaim,1]{label=\normalfont\textbf{\arabic*.}}
\begin{document}
\begin{theorem}
For a left artin ring $\Lambda$ we have the following.
\begin{thmclaim}
\item\label{th:radnil} The radical of $\Lambda$ is nilpotent.
\item\label{th:finsim} There is only a finite number of nonisomorphic simple $\Lambda$-modules.
\item\label{th:leftnoe} $\Lambda$ is left noetherian.
\end{thmclaim}
\end{theorem}
\begin{proof}
\begin{description}
\item[\ref{th:leftnoe}] Since $\Lambda$ has a finite filtration...\par
\item[\ref{th:radnil}] Let $I$ be an ideal in $\Lambda$...\par
\item[\ref{th:finsim}] If for a $\Lambda$-module $A$ we have...
\end{description}
\end{proof}
\end{document}
还有一种使用字母字符的变体:
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{enumitem}
\newtheorem{theorem}{Theorem}
\newlist{thmclaim}{enumerate}{1}
\setlist[thmclaim,1]{label=\normalfont\textbf{(\alph*)}}
\begin{document}
\begin{theorem}
For a left artin ring $\Lambda$ we have the following.
\begin{thmclaim}
\item\label{th:radnil} The radical of $\Lambda$ is nilpotent.
\item\label{th:finsim} There is only a finite number of nonisomorphic simple $\Lambda$-modules.
\item\label{th:leftnoe} $\Lambda$ is left noetherian.
\end{thmclaim}
\end{theorem}
\begin{proof}
\begin{description}
\item[\ref{th:leftnoe}] Since $\Lambda$ has a finite filtration...\par
\item[\ref{th:radnil}] Let $I$ be an ideal in $\Lambda$...\par
\item[\ref{th:finsim}] If for a $\Lambda$-module $A$ we have...
\end{description}
\end{proof}
\end{document}
还有另一种变化,也改变了ref
键以自动添加“索赔证明”(这可能是多余的):
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{enumitem}
\newtheorem{theorem}{Theorem}
\newlist{thmclaim}{enumerate}{1}
\setlist[thmclaim,1]{label=\normalfont\textbf{\arabic*.},ref=Proof of claim~\arabic*.}
\begin{document}
\begin{theorem}
For a left artin ring $\Lambda$ we have the following.
\begin{thmclaim}
\item\label{th:radnil} The radical of $\Lambda$ is nilpotent.
\item\label{th:finsim} There is only a finite number of nonisomorphic simple $\Lambda$-modules.
\item\label{th:leftnoe} $\Lambda$ is left noetherian.
\end{thmclaim}
\end{theorem}
\begin{proof}
\begin{description}
\item[\ref{th:leftnoe}] Since $\Lambda$ has a finite filtration...\par
\item[\ref{th:radnil}] Let $I$ be an ideal in $\Lambda$...\par
\item[\ref{th:finsim}] If for a $\Lambda$-module $A$ we have...
\end{description}
\end{proof}
\end{document}