\documentclass{article}
\usepackage{graphicx}
\begin{document}
\vspace{\baselineskip}\noindent
\textbf{THEOREM :} If an operator has both Left Identity and Right Identity then it is \emph{UNIQUE}.
\vspace{\baselineskip}\noindent
\textbf{PROOF :} Let e_{l} is left identity
therefore e_{l} * e_{r}
this implies e_{r}
\end{document}
答案1
正如评论中所述,您只需写下符号即可在数学模式中获取它们。软件包喜欢amsmath
并amssymb
支持您。
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\newtheorem{theorem}{THEOREM}
\newtheorem{proof}{PROOF}
\begin{document}
\begin{theorem}
If an operator has both Left Identity and
Right Identity then it is \emph{UNIQUE}.
\end{theorem}
\begin{proof}
Let $e_{l}$ is left identity
$\therefore e_{l} * e_{r} \implies e_{r}$
\end{proof}
\end{document}
答案2
答案3
答案4
\documentclass{article}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\begin{document}
\vspace{\baselineskip}\noindent
\textbf{THEOREM :} If an operator has both Left Identity and Right Identity then it is \emph{UNIQUE}.
\vspace{\baselineskip}\noindent
\textbf{PROOF :} Let e\_{l} is left identity
$\therefore$ e\_{l} * e\_{r}
$\implies$ e\_{r}
$\Rightarrow$ e\_{r}
\end{document}
上述代码将给出以下结果。我添加了两个“暗示”符号,以防其中一个符号看起来太长。
该文件的更好的格式是,
\documentclass{article}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\theoremstyle{definition}
\newtheorem{theorem}{Theorem} % for adding lemma
\begin{document}
\vspace{\baselineskip}\noindent
\begin{theorem}
If an operator has both Left Identity and Right Identity then it is \emph{UNIQUE}.
\end{theorem}
\begin{proof}
Let $e\_l$ is left identity.
\begin{align*}
\therefore e_l * e_r \\
\implies e_r \\
\Rightarrow e_r
\end{align*}
\end{proof}
\end{document}
这将生成以下内容。