因此和暗示符号如何表达

因此和暗示符号如何表达
\documentclass{article}
\usepackage{graphicx}

\begin{document}
\vspace{\baselineskip}\noindent
\textbf{THEOREM :} If an operator has both Left Identity and Right Identity then it is \emph{UNIQUE}.
\vspace{\baselineskip}\noindent
\textbf{PROOF :} Let e_{l} is left identity 
                         therefore e_{l} * e_{r} 
                             this implies e_{r}
\end{document}

答案1

正如评论中所述,您只需写下符号即可在数学模式中获取它们。软件包喜欢amsmathamssymb支持您。

\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\newtheorem{theorem}{THEOREM}
\newtheorem{proof}{PROOF}
\begin{document}
\begin{theorem}
If an operator has both Left Identity and
Right Identity then it is \emph{UNIQUE}.
\end{theorem}
\begin{proof}
Let $e_{l}$ is left identity 
$\therefore e_{l} * e_{r} \implies e_{r}$
\end{proof}
\end{document}

在此处输入图片描述

答案2

\therefore可以构建一个稍微大一点的版本,如下所示:

\dot{.\hspace{.095in}.}\hspace{.5in}

传统版本与较大版本的比较:

在此处输入图片描述

答案3

初始化代码:

\def\therefore{\boldsymbol{\text{ }
\leavevmode
\lower0.4ex\hbox{$\cdot$}
\kern-.5em\raise0.7ex\hbox{$\cdot$}
\kern-0.55em\lower0.4ex\hbox{$\cdot$}
\thinspace\text{ }}}

然后可以使用以下方式调用:

\therefore

呈现为:

因此呈现

答案4

\documentclass{article}
\usepackage{graphicx}

\usepackage{amssymb}
\usepackage{amsmath}

\begin{document}
\vspace{\baselineskip}\noindent
\textbf{THEOREM :} If an operator has both Left Identity and Right Identity then it is \emph{UNIQUE}.
\vspace{\baselineskip}\noindent
\textbf{PROOF :} Let e\_{l} is left identity 
                         $\therefore$ e\_{l} * e\_{r} 
                             $\implies$ e\_{r}
                             $\Rightarrow$ e\_{r}
\end{document}

上述代码将给出以下结果。我添加了两个“暗示”符号,以防其中一个符号看起来太长。

初步的

该文件的更好的格式是,

\documentclass{article}
\usepackage{graphicx}

\usepackage{amssymb}
\usepackage{amsmath}

\usepackage{amsthm}
\theoremstyle{definition}
\newtheorem{theorem}{Theorem} % for adding lemma

\begin{document}
\vspace{\baselineskip}\noindent
\begin{theorem}
If an operator has both Left Identity and Right Identity then it is \emph{UNIQUE}.
\end{theorem}

\begin{proof}
Let $e\_l$ is left identity.
\begin{align*}
    \therefore e_l * e_r \\
    \implies e_r \\
    \Rightarrow e_r
\end{align*}
\end{proof}
\end{document}

这将生成以下内容。

改进

相关内容