为什么第二页只有一个问题?使用考试类

为什么第二页只有一个问题?使用考试类

我正在尝试格式化这份考试;但是,每页的问题数量太可怕了。第二页只有一个问题,下一页有几个问题,最后一页和第三页只有两个问题,这毫无逻辑可言。

有人能解释一下如何正确留出问题的空间以便有足够的空白来解决问题吗?

\documentclass[12pt]{exam}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{epstopdf}
\usepackage{amsmath}
\usepackage{paralist}
\usepackage{enumerate}
\usepackage{wrapfig}
\usepackage{xcolor}
\usepackage{graphicx}

\newcommand{\Lim}[1]{\raisebox{0.5ex}{\scalebox{0.8}{$\displaystyle \lim_{#1}\;$}}}
% \pagebreak[10]
\printanswers


\pagestyle{headandfoot}
\runningheadrule
\firstpageheader{AP Calculus Practice Exam A1}{  }{Senior 2}
\firstpageheadrule
\runningheader{AP Calculus Practice Exam A1} { Page \thepage\ of \numpages} {Senior 2 }
\firstpagefooter{}{}{Page \thepage\ of \numpages}
\runningfooter{}{\iflastpage{End of exam}{Please go on to the next page\ldots}}{Page \thepage\ of \numpages}
% For a visual definition of these parameters, see
% \textwidth = 6.5 in
% \textheight = 9 in
% \oddsidemargin = 0.0 in
% \evensidemargin = 0.0 in
% \topmargin = 0.0 in           
% \headheight = 0.0 in          
% \headsep = 0.0 in


% These problems were taken from Calculus Problem Book AP exams.
\begin{document}
\begin{titlepage}


  \begin{center}
    \textsc{\LARGE A.P. Practice Test:A1}\\[0.5cm]


    \textsc{\LARGE Multiple-Choice}\\[0.5cm]


    \textsc{\LARGE No Calculators}\\[0.5cm]


    Time - 40 minutes\\

  \end{center}

  \vfill







  \emph{Directions}: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is best of the choices given and clearly circle the choice.  Do not spend too much time on any one problem.



  \vfill
  \begin{center} Good Luck\! \end{center}






\end{titlepage}





% These problems were taken from Calculus Problem Book AP exams.

\begin{questions}
  % A.P. Calculus Test One Section One Problem 1
  \begin{samepage}
    \question Which of the following is continuous at $x = 0$ ?
    \begin{center}
      \begin{parts}
        \renewcommand{\thepartno}{\Roman{partno}}
        \part $f\left(x\right) = \vert x \vert$
        \part $f\left(x\right) = e^{x}$
        \part $f\left(x\right) = \ln\left(e^{x} - 1 \right)$
      \end{parts}
    \end{center}
    \begin{oneparchoices}
      \choice I only
      \choice II only
      \CorrectChoice I and II only
      \choice II and III only
      \choice none
    \end{oneparchoices}
  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 2
    \question The graph of a function $f$ is reflected across the $x$-axis and then shifted up 2 units. Which of the following describes this transformation of $f$? \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $-f\left(x\right)$
      \choice $f\left(x\right) + 2$
      \choice $-f\left(x + 2 \right)$
      \choice $-f\left(x - 2 \right)$
      \CorrectChoice $-f\left(x\right) + 2$
    \end{choices}
  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 3
    \question Which of the following functions is \textit{not} continuous for all real numbers $x$?
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $f\left(x\right) = x^{1/3}$
      \CorrectChoice $f\left(x\right) = \dfrac{2}{\left(x + 1\right)^4}$
      \choice $f\left(x\right) = \vert x + 1 \vert$
      \choice $f\left(x\right) = \sqrt{1 + e^x}$
      \choice $f\left(x\right) = \dfrac{x - 3}{x^2 + 9}$
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 4
    \question $\Lim{x \to 1} \dfrac{\ln x}{x}$ is
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice 1
      \CorrectChoice 0
      \choice $e$
      \choice $-e$
      \choice nonexistent
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 5
    \question $\Lim{x \to 0} \left( \dfrac{1}{x} + \dfrac{1}{x^2} \right) = $
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice 0
      \choice $\dfrac{1}{2}$
      \choice 1
      \choice 2
      \CorrectChoice $\infty$
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 6
    \question $\Lim{x \to \infty} \dfrac{x^3 - 4x + 1}{2x^3 - 5} =  $
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $-\dfrac{1}{5}$
      \CorrectChoice $\dfrac{1}{2}$
      \choice $\dfrac{2}{3}$
      \choice 1
      \choice Does not exist
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}



  \newpage
  \begin{samepage}

    % A.P. Calculus Test One Section One Problem 7
    \question For what value of $k$ does $\Lim{x \to 4} \dfrac{x^2 - x + k}{x - 4}$ exist?
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \CorrectChoice -12
      \choice -4
      \choice 3
      \choice 7
      \choice No such value exists
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 8
    \question $\Lim{x \to 0} \dfrac{\tan x}{x} = $
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice -1
      \choice $-\dfrac{1}{2}$
      \choice 0
      \choice $-\dfrac{1}{2}$
      \CorrectChoice 1
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 9
    \question Suppose $f$ is defined as
    \[f\left(x\right) = \begin{cases} \dfrac{\vert x \vert - 2}{x - 2} & x \neq 2 \\ k & x = 2 \end{cases}\]
    Then the value of $k$ for which $f\left(x\right)$ is continuous for all real values of $x$ is $k = $
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice -2
      \choice -1
      \choice 0
      \CorrectChoice 1
      \choice 2
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}



  \newpage
  \begin{samepage}
    % \hrule
    % A.P. Calculus Test One Section One Problem 10
    \question The average rate of change of $f\left(x\right) = x^3$ over the interval $[a,b]$ is
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $3b + 3a$
      \CorrectChoice $b^2 + ab + a^2$
      \choice $\dfrac{b^2 + a^2}{2}$
      \choice $\dfrac{b^3 + a^3}{2}$
      \choice $\dfrac{b^4 - a^4}{4\left(b - a\right)}$
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 11
    \question The function
    \[ G\left(x\right) = \begin{cases} x - 5 & x > 2 \\
      -5   & x = 2 \\
      5x - 13 & x < 2 \end{cases} \]
    is not continuous at $x = 2$ because
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $G\left(2\right)$ is not defined
      \choice $\Lim{x \to 2} G\left(x\right)$ does not exist
      \CorrectChoice $\Lim{x \to 2} G\left(x\right) \neq G\left(2\right)$
      \choice $G\left(2\right) \neq -5$
      \choice None of the above
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 12
    \question $\Lim{x \to -2} \dfrac{\sqrt{2x + 5} -1}{x + 2} = $
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \CorrectChoice 1
      \choice 0
      \choice $\infty$
      \choice $-\infty$
      \choice Does not exist
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}



  \newpage
  \begin{samepage}
    % \hrule
    % A.P. Calculus Test One Section One Problem 13
    \question The Intermediate Value Theorem states that given a continuous function $f$ defined on a closed interval $[a,b]$ for which 0 is between $f\left(a\right)$ and $f\left(b\right)$, there exists a point $c$ between $a$ and $b$ such that
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $c = a - b$
      \choice $f\left(a\right) = f\left(b\right)$
      \CorrectChoice $f\left(c\right) = 0$
      \choice $f\left(0\right) = c$
      \choice $c = 0$
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}


  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 14
    \question The function $t\left(x\right) = 2^x - \dfrac{\vert x - 3\vert}{x - 3}$ has
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice a removable discontinuity at $x = 3$
      \choice an infinite discontinuity at $x = 3$
      \CorrectChoice a jump discontinuity at $x = 3$
      \choice no discontinuities
      \choice a removable discontinuity at $x = 0$ and an infinite discontinuity at $x = 3$
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % A.P. Calculus Test One Section One Problem 15
    \question Find the values of $c$ so that the function
    \[  h\left(x\right) = \begin{cases} c^2 - x^2 & x < 2 \\
      x + c     &  x \geq 2 \end{cases}\]
    is continuous everywhere
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice -3,-2
      \choice 2,3
      \CorrectChoice -2, 3
      \choice -3, 2
      \choice There are no such values
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}



  \newpage
  \begin{samepage}
    % \hrule
    % A.P. Calculus Test Two Section One Problem 4
    \question If $F\left(x\right) = x \sin x$, then find $F^{\prime}\left(\dfrac{3\pi}{2}\right)$
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice 0
      \choice 1
      \CorrectChoice -1
      \choice $\dfrac{3\pi}{2}$
      \choice $-\dfrac{3\pi}{2}$
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % Calculus Problem Book A.P. Calculus Test Three Question 8
    \question The position of a particle moving on the $x$-axis, starting at time $t=0$, is given by $x\left(t\right) = \left(t-a\right)^3\left(t-b\right)$, where $0 < a < b$. Which of the following statements are true?
    \begin{center} \begin{parts}
        \renewcommand{\thepartno}{\Roman{partno}}
        \part The particle is at a positive position on the $x$-axis at time $t = \dfrac{a + b}{2}$
        \part The particle is at rest at $t = a$
        \part The particle is moving to the right at time $t=b$
      \end{parts}\end{center}
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice I only
      \choice II only
      \CorrectChoice III only
      \choice I and II only
      \choice II and III only
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}




  \begin{samepage}
    \hrule
    % Calculus Problem Book A.P. Calculus Test Three Page 96  Question 14
    \question Let $f$ be a twice-differentiable function of $x$ such that, when $x = c$, $f$ is decreasing, concave up, and has an $x$-intercept. Which of the following is true?
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice $f\left(c\right) < f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right)$
      \choice $f\left(c\right) < f^{\prime \prime}\left(c\right)< f^{\prime}\left(c\right) $
      \CorrectChoice $ f^{\prime}\left(c\right) < f\left(c\right)< f^{\prime \prime}\left(c\right)$
      \choice $ f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right) < f\left(c\right) $
      \choice $f^{\prime \prime}\left(c\right) < f\left(c\right) <  f^{\prime}\left(c\right) $
    \end{choices}

  \end{samepage}
  \vspace{\stretch{8}}

  % \newpage
  \begin{samepage}
    % \hrule
    % Calculus Problem Book A.P. Calculus Test Four Section One Question 3
    \question Let $f\left(x\right)$ be defined as below. Evaluate $\int_0^6 f\left(x\right)\,\mathrm{d}x$ 

    \[f\left(x\right) = \begin{cases} x & 0<x\leq 2 \\ 1 & 2 < x \leq 4 \\ \frac{x}{2} &  4 < x \leq 6 

    \end{cases}\]

    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \choice 5
      \choice 6
      \choice 7 
      \choice 8 
      \CorrectChoice 9
    \end{choices}
  \end{samepage}
  \vspace{\stretch{8}}


  \begin{samepage}
    \hrule
    % Calculus Problem Book A.P. Calculus Test Five Section One Question 4
    \question Solve the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = y$ with the initial condition that $y\left(0\right) =1.$ From your solution, find the value of $y\left(e\right)$
    \begin{choices}
      \renewcommand{\thepartno}{\Alph{partno}}
      \CorrectChoice $e^e$
      \choice $e$
      \choice $e-1$
      \choice $e^e - 1$
      \choice $e^2$
    \end{choices}
  \end{samepage}
  \vspace{\stretch{8}}


\end{questions}
\end{document}

答案1

考虑定义一些简单的标记来提高文档的可读性,但不要使用samepage它;据我所知,它没有提供任何有用的功能。我用我定义的环境minipage中的环境替换它myquestion

使用enumitem( 的后继/替代)enumerate,我还为问题定义了一种新的列表类型,pickmulti您可以在其中从多个选项中进行选择。对于这些问题,我还定义了标签并使用引用,以便您可以随时更改编号方案。

在此处输入图片描述

pickmulti做它的工作:
在此处输入图片描述

\documentclass[12pt]{exam}
\usepackage{amssymb, amsmath}
\usepackage{enumitem}
\usepackage{graphicx}

\newcommand{\Lim}[1]{\raisebox{0.5ex}{\scalebox{0.8}{$\displaystyle\lim_{#1}\;$}}}
% ^ Reconsider this how you typeset this.

\printanswers

\newenvironment{myquestion}{%
  \ifodd\value{question}
    %\rule{\linewidth}{1pt}\par
    \hrule
    \vspace{1em}
  \fi
  \minipage{\linewidth}%
}{%
  \endminipage
  \vspace{\stretch{1}}%
  \ifodd\value{question}\else
    \newpage
  \fi
}

\newlist{pickmulti}{enumerate}{1}
\setlist[pickmulti]{
  label=\Roman*.,
  ref=(\Roman*)
}


%\pagestyle{headandfoot}
\firstpageheadrule
\firstpageheader{AP Calculus Practice Exam A1}{}{Senior 2}
\firstpagefooter{}{}{Page \thepage\ of \numpages}

\runningheadrule
\runningheader{AP Calculus Practice Exam A1}{Page \thepage\ of \numpages}{Senior 2}
\runningfooter{}{\iflastpage{End of exam}{Please go on to the next page\ldots}}{Page \thepage\ of \numpages}


% These problems were taken from Calculus Problem Book AP exams.
\begin{document}
\begin{titlepage}
  \begin{center}
    \LARGE\scshape
    \setlength\parskip{0.5cm}

    A.P. Practice Test: A1

    Multiple-Choice

    No Calculators

    Time: 40 minutes
  \end{center}

  \vfill

  \paragraph{Directions}
  Solve each of the following problems,
    using the available space for scratch work.
  After examining the form of the choices,
    decide which is best of the choices given and clearly circle the choice.
  Do not spend too much time on any one problem.

  \vfill

  \begin{center}
    Good Luck!
  \end{center}
\end{titlepage}

% These problems were taken from Calculus Problem Book AP exams.

\begin{questions}
  % A.P. Calculus Test One Section One Problem 1
  \begin{myquestion}
    \question
    Which of the following is continuous at $x = 0$?
    \begin{pickmulti}
      \item \label{q:cont:abs(x)}
        $f\left(x\right) = \vert x \vert$
      \item \label{q:cont:e**x}
        $f\left(x\right) = e^{x}$
      \item \label{q:cont:ln(e**x-1)}
        $f\left(x\right) = \ln\left(e^{x} - 1 \right)$
    \end{pickmulti}
    \begin{oneparchoices}
      \choice \ref{q:cont:abs(x)} only
      \choice \ref{q:cont:e**x} only
      \CorrectChoice \ref{q:cont:abs(x)} and \ref{q:cont:e**x} only
      \choice \ref{q:cont:e**x} and \ref{q:cont:ln(e**x-1)} only
      \choice none
    \end{oneparchoices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 2
    \question
    The graph of a function $f$ is reflected across the $x$-axis and then shifted up 2 units.
    Which of the following describes this transformation of $f$?
    \begin{choices}
      \choice $-f\left(x\right)$
      \choice $f\left(x\right) + 2$
      \choice $-f\left(x + 2 \right)$
      \choice $-f\left(x - 2 \right)$
      \CorrectChoice $-f\left(x\right) + 2$
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 3
    \question
    Which of the following functions is \emph{not} continuous for all real numbers $x$?
    \begin{choices}
      \choice $f\left(x\right) = x^{1/3}$
      \CorrectChoice $f\left(x\right) = \dfrac{2}{\left(x + 1\right)^4}$
      \choice $f\left(x\right) = \vert x + 1 \vert$
      \choice $f\left(x\right) = \sqrt{1 + e^x}$
      \choice $f\left(x\right) = \dfrac{x - 3}{x^2 + 9}$
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 4
    \question $\Lim{x \to 1} \dfrac{\ln x}{x}$ is
    \begin{choices}
      \choice 1
      \CorrectChoice 0
      \choice $e$
      \choice $-e$
      \choice non-existent
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 5
    \question $\Lim{x \to 0} \left( \dfrac{1}{x} + \dfrac{1}{x^2} \right) = $
    \begin{choices}
      \choice 0
      \choice $\dfrac{1}{2}$
      \choice 1
      \choice 2
      \CorrectChoice $\infty$
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 6
    \question $\Lim{x \to \infty} \dfrac{x^3 - 4x + 1}{2x^3 - 5} =  $
    \begin{choices}
      \choice $-\dfrac{1}{5}$
      \CorrectChoice $\dfrac{1}{2}$
      \choice $\dfrac{2}{3}$
      \choice 1
      \choice Does not exist
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 7
    \question For what value of $k$ does $\Lim{x \to 4} \dfrac{x^2 - x + k}{x - 4}$ exist?
    \begin{choices}
      \CorrectChoice $-12$
      \choice $-4$
      \choice 3
      \choice 7
      \choice No such value exists
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 8
    \question $\Lim{x \to 0} \dfrac{\tan x}{x} = $
    \begin{choices}
      \choice $-1$
      \choice $-\dfrac{1}{2}$
      \choice 0
      \choice $-\dfrac{1}{2}$
      \CorrectChoice 1
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 9
    \question
    Suppose $f$ is defined as
    \[
    f\left(x\right) =
    \begin{cases}
      \dfrac{\vert x \vert - 2}{x - 2} & x \neq 2 \\
      k & x = 2
    \end{cases}
    \]
    Then the value of $k$ for which $f\left(x\right)$ is continuous for all real values of $x$ is $k = $
    \begin{choices}
      \choice $-2$
      \choice $-1$
      \choice 0
      \CorrectChoice 1
      \choice 2
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 10
    \question The average rate of change of $f\left(x\right) = x^3$ over the interval $[a,b]$ is
    \begin{choices}
      \choice $3b + 3a$
      \CorrectChoice $b^2 + ab + a^2$
      \choice $\dfrac{b^2 + a^2}{2}$
      \choice $\dfrac{b^3 + a^3}{2}$
      \choice $\dfrac{b^4 - a^4}{4\left(b - a\right)}$
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 11
    \question The function
    \[
    G\left(x\right) =
    \begin{cases}
      x - 5 & x > 2 \\
      -5   & x = 2 \\
      5x - 13 & x < 2
    \end{cases}
    \]
    is not continuous at $x = 2$ because
    \begin{choices}
      \choice $G\left(2\right)$ is not defined
      \choice $\Lim{x \to 2} G\left(x\right)$ does not exist
      \CorrectChoice $\Lim{x \to 2} G\left(x\right) \neq G\left(2\right)$
      \choice $G\left(2\right) \neq -5$
      \choice None of the above
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 12
    \question $\Lim{x \to -2} \dfrac{\sqrt{2x + 5} -1}{x + 2} = $
    \begin{choices}
      \CorrectChoice 1
      \choice 0
      \choice $\infty$
      \choice $-\infty$
      \choice Does not exist
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 13
    \question
    The Intermediate Value Theorem states that given a continuous
    function $f$ defined on a closed interval $[a,b]$ for which 0 is
    between $f\left(a\right)$ and $f\left(b\right)$, there exists a
    point $c$ between $a$ and $b$ such that
    \begin{choices}
      \choice $c = a - b$
      \choice $f\left(a\right) = f\left(b\right)$
      \CorrectChoice $f\left(c\right) = 0$
      \choice $f\left(0\right) = c$
      \choice $c = 0$
    \end{choices}
  \end{myquestion}
  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 14
    \question The function $t\left(x\right) = 2^x - \dfrac{\vert x - 3\vert}{x - 3}$ has
    \begin{choices}
      \choice a removable discontinuity at $x = 3$
      \choice an infinite discontinuity at $x = 3$
      \CorrectChoice a jump discontinuity at $x = 3$
      \choice no discontinuities
      \choice a removable discontinuity at $x = 0$ and an infinite discontinuity at $x = 3$
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test One Section One Problem 15
    \question Find the values of $c$ so that the function
    \[
    h\left(x\right) =
    \begin{cases}
      c^2 - x^2 & x < 2 \\
      x + c     &  x \geq 2
    \end{cases}
    \]
    is continuous everywhere
    \begin{choices}
      \choice $-3,-2$
      \choice 2,3
      \CorrectChoice $-2$, 3
      \choice $-3$, $2$
      \choice There are no such values
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % A.P. Calculus Test Two Section One Problem 4
    \question If $F\left(x\right) = x \sin x$, then find $F^{\prime}\left(\dfrac{3\pi}{2}\right)$
    \begin{choices}
      \choice 0
      \choice 1
      \CorrectChoice $-1$
      \choice $\dfrac{3\pi}{2}$
      \choice $-\dfrac{3\pi}{2}$
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % Calculus Problem Book A.P. Calculus Test Three Question 8
    \question
    The position of a particle moving on the $x$-axis, starting at
    time $t=0$, is given by $x\left(t\right) = \left( t - a \right)^3
    \left( t - b \right)$, where $0 < a < b$.  Which of the following
    statements are true?
    \begin{pickmulti}
    \item \label{q:part:opt:pos}
      The particle is at a positive position on the $x$-axis at time $t = \dfrac{a + b}{2}$
    \item \label{q:part:opt:rest}
      The particle is at rest at $t = a$
    \item \label{q:part:opt:right}
      The particle is moving to the right at time $t=b$
    \end{pickmulti}
    \begin{choices}
      \choice \ref{q:part:opt:pos} only
      \choice \ref{q:part:opt:rest} only
      \CorrectChoice \ref{q:part:opt:right} only
      \choice \ref{q:part:opt:pos} and \ref{q:part:opt:rest} only
      \choice \ref{q:part:opt:rest} and \ref{q:part:opt:right} only
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % Calculus Problem Book A.P. Calculus Test Three Page 96  Question 14
    \question
    Let $f$ be a twice-differentiable function of $x$ such that, when
    $x = c$, $f$ is decreasing, concave up, and has an
    $x$-intercept.  Which of the following is true?
    \begin{choices}
      \choice $f\left(c\right) < f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right)$
      \choice $f\left(c\right) < f^{\prime \prime}\left(c\right)< f^{\prime}\left(c\right) $
      \CorrectChoice $ f^{\prime}\left(c\right) < f\left(c\right)< f^{\prime \prime}\left(c\right)$
      \choice $ f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right) < f\left(c\right) $
      \choice $f^{\prime \prime}\left(c\right) < f\left(c\right) <  f^{\prime}\left(c\right) $
    \end{choices}
  \end{myquestion}

  \begin{myquestion}
    % Calculus Problem Book A.P. Calculus Test Four Section One Question 3
    \question
    Let $f\left(x\right)$ be defined as below.
    Evaluate $\int_0^6 f\left(x\right)\,\mathrm{d}x$ where
    \[
    f\left(x\right) =
    \begin{cases}
      x & 0<x\leq 2 \\
      1 & 2 < x \leq 4 \\
      \frac{x}{2} & 4 < x \leq 6
    \end{cases}
    \]

    \begin{choices}
      \choice 5
      \choice 6
      \choice 7
      \choice 8
      \CorrectChoice 9
    \end{choices}
  \end{myquestion}
  \begin{myquestion}
    % Calculus Problem Book A.P. Calculus Test Five Section One Question 4
    \question
    Solve the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = y$
      with the initial condition that $y\left(0\right) = 1$.
    From your solution, find the value of $y\left(e\right)$
    \begin{choices}
      \CorrectChoice $e^e$
      \choice $e$
      \choice $e-1$
      \choice $e^e - 1$
      \choice $e^2$
    \end{choices}
  \end{myquestion}
\end{questions}
\end{document}

答案2

我会在每页上放置两个问题,每个问题都有一个\vfill中间项和一个强制\newpage后续项(这可以自动化;见下文)。

使用下面的每个问题会在同一页内留下相等的空间。如果您希望从一页到下一页\vfill有相同的水平线( ),也可以通过一些计算来实现。\questiondiv

在此处输入图片描述

\documentclass[12pt]{exam}% http://ctan.org/pkg/exam
\usepackage{amsmath}% http://ctan.org/pkg/amsmath

\printanswers

\pagestyle{headandfoot}
\runningheadrule
\firstpageheader{AP Calculus Practice Exam A1}{  }{Senior 2}
\firstpageheadrule
\runningheader{AP Calculus Practice Exam A1} { Page \thepage\ of \numpages} {Senior 2 }
\firstpagefooter{}{}{Page \thepage\ of \numpages}
\runningfooter{}{\iflastpage{End of exam}{Please go on to the next page\ldots}}{Page \thepage\ of \numpages}
% For a visual definition of these parameters, see
%\textwidth = 6.5 in
%\textheight = 9 in
%\oddsidemargin = 0.0 in
%\evensidemargin = 0.0 in
%\topmargin = 0.0 in            
%\headheight = 0.0 in           
%\headsep = 0.0 in

\newcommand{\questiondiv}{\hrule}
%These problems were taken from Calculus Problem Book AP exams.
\begin{document}
\begin{titlepage}

\begin{center}
  \textsc{\LARGE A.P. Practice Test: A1}\\[0.5cm]
  \textsc{\LARGE Multiple-Choice}\\[0.5cm]
  \textsc{\LARGE No Calculators}\\[0.5cm]
  Time - 40 minutes\\

\vfill

\emph{Directions}: Solve each of the following problems, using the available space for 
scratch work. After examining the form of the choices, decide which is best of the 
choices given and clearly circle the choice. Do not spend too much time on any one problem.

\vfill

Good Luck!
\end{center}

\end{titlepage}

%These problems were taken from Calculus Problem Book AP exams.

\begin{questions}
% A.P. Calculus Test One Section One Problem 1
  \question
  Which of the following is continuous at $x = 0$ ?
  \begin{parts}
    \renewcommand{\thepartno}{\Roman{partno}}
    \part $f(x) = \vert x \vert$
    \part $f(x) = e^{x}$
    \part $f(x) = \ln\bigl(e^{x} - 1 \bigr)$
  \end{parts}
  \begin{oneparchoices}
    \choice I only
    \choice II only
    \CorrectChoice I and II only
    \choice II and III only
    \choice none
  \end{oneparchoices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 2
  \question
  The graph of a function~$f$ is reflected across the $x$-axis and then shifted 
  up~2 units. Which of the following describes this transformation of~$f$?
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $-f(x)$
    \choice $f(x) + 2$
    \choice $-f(x + 2)$
    \choice $-f(x - 2)$
    \CorrectChoice $-f(x) + 2$
  \end{choices}

  \vfill

  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 3
  \question
  Which of the following functions is \emph{not\/} continuous for all real numbers~$x$?
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $f(x) = x^{1/3}$
    \CorrectChoice $f(x) = \dfrac{2}{(x + 1)^4}$
    \choice $f(x) = \vert x + 1 \vert$
    \choice $f(x) = \sqrt{1 + e^x}$
    \choice $f(x) = \dfrac{x - 3}{x^2 + 9}$
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 4
  \question
  $\displaystyle \lim_{x \to 1} \dfrac{\ln x}{x}$ is
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice 1
    \CorrectChoice 0
    \choice $e$
    \choice $-e$
    \choice nonexistent
  \end{choices}

  \vfill

  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 5
  \question
  $\displaystyle \lim_{x \to 0} \biggl( \dfrac{1}{x} + \dfrac{1}{x^2} \biggr) = $
   \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice 0
    \choice $\dfrac{1}{2}$
    \choice 1
    \choice 2
    \CorrectChoice $\infty$
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 6
  \question
  $\displaystyle \lim_{x \to \infty} \dfrac{x^3 - 4x + 1}{2x^3 - 5} =  $
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $-\dfrac{1}{5}$
    \CorrectChoice $\dfrac{1}{2}$
    \choice $\dfrac{2}{3}$
    \choice 1
    \choice Does not exist
  \end{choices}

  \vfill

  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 7
  \question
  For what value of~$k$ does $\displaystyle \lim_{x \to 4} \dfrac{x^2 - x + k}{x - 4}$ exist?
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \CorrectChoice -12
    \choice -4
    \choice 3
    \choice 7
    \choice No such value exists
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 8
  \question
  $\displaystyle \lim_{x \to 0} \dfrac{\tan x}{x} = $
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice -1
    \choice $-\dfrac{1}{2}$
    \choice 0
    \choice $-\dfrac{1}{2}$
    \CorrectChoice 1
  \end{choices}

  \vfill

  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 9
  \question
  Suppose~$f$ is defined as
  \[
    f(x) = \begin{cases}
      \dfrac{\vert x \vert - 2}{x - 2} & x \neq 2 \\
      k & x = 2
    \end{cases}
  \]
  Then the value of~$k$ for which~$f(x)$ is continuous for all real values of~$x$ is $k = $
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice -2
    \choice -1
    \choice 0
    \CorrectChoice 1
    \choice 2
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 10
  \question
  The average rate of change of $f(x) = x^3$ over the interval $[a,b]$ is
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $3b + 3a$
    \CorrectChoice $b^2 + ab + a^2$
    \choice $\dfrac{b^2 + a^2}{2}$
    \choice $\dfrac{b^3 + a^3}{2}$
    \choice $\dfrac{b^4 - a^4}{4(b - a)}$
  \end{choices}

  \vfill


  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 11
  \question
  The function
  \[
    G(x) = \begin{cases} x - 5 & x > 2 \\
      -5   & x = 2 \\
      5x - 13 & x < 2
    \end{cases}
  \]
  is not continuous at $x = 2$ because
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $G(2)$ is not defined
    \choice $\displaystyle \lim_{x \to 2} G(x)$ does not exist
    \CorrectChoice $\lim_{x \to 2} G(x) \neq G(2)$
    \choice $G(2) \neq -5$
    \choice None of the above
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 12
  \question
  $\displaystyle \lim_{x \to -2} \dfrac{\sqrt{2x + 5} -1}{x + 2} = $
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \CorrectChoice 1
    \choice 0
    \choice $\infty$
    \choice $-\infty$
    \choice Does not exist
  \end{choices}

  \vfill

  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 13
  \question
  The Intermediate Value Theorem states that given a continuous function~$f$ 
  defined on a closed interval $[a,b]$ for which~0 is between~$f(a)$ and~$f(b)$, 
  there exists a point~$c$ between~$a$ and~$b$ such that
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $c = a - b$
    \choice $f(a) = f(b)$
    \CorrectChoice $f(c) = 0$
    \choice $f(0) = c$
    \choice $c = 0$
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test One Section One Problem 14
  \question
  The function $t(x) = 2^x - \dfrac{\vert x - 3\vert}{x - 3}$ has
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice a removable discontinuity at $x = 3$
    \choice an infinite discontinuity at $x = 3$
    \CorrectChoice a jump discontinuity at $x = 3$
    \choice no discontinuities
    \choice a removable discontinuity at $x = 0$ and an infinite discontinuity at $x = 3$
  \end{choices}

  \vfill

  \newpage%\questiondiv

% A.P. Calculus Test One Section One Problem 15
  \question
  Find the values of~$c$ so that the function
  \[
    h(x) = \begin{cases}
      c^2 - x^2 & x < 2 \\
      x + c     &  x \geq 2
    \end{cases}
  \]
  is continuous everywhere
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $-3,-2$
    \choice $2,3$
    \CorrectChoice $-2, 3$
    \choice $-3,2$
    \choice There are no such values
  \end{choices}

  \vfill

  \questiondiv

% A.P. Calculus Test Two Section One Problem 4
  \question
  If $F(x) = x \sin x$, then find $F^{\prime}F(\tfrac{3\pi}{2})$
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice 0
    \choice 1
    \CorrectChoice $-1$
    \choice $\tfrac{3\pi}{2}$
    \choice $-\tfrac{3\pi}{2}$
  \end{choices}

  \vfill

  \newpage%\questiondiv

% Calculus Problem Book A.P. Calculus Test Three Question 8
  \question
  The position of a particle moving on the $x$-axis, starting at time $t=0$, 
  is given by $x(t) = (t-a)^3(t-b)$, where $0 < a < b$. Which of the following 
  statements are true?
  \begin{parts}
    \renewcommand{\thepartno}{\Roman{partno}}
    \part The particle is at a positive position on the $x$-axis at time $t = \dfrac{a + b}{2}$
    \part The particle is at rest at $t = a$
    \part The particle is moving to the right at time $t=b$
  \end{parts}
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice I only
    \choice II only
    \CorrectChoice III only
    \choice I and II only
    \choice II and III only
  \end{choices}

  \vfill

  \questiondiv

% Calculus Problem Book A.P. Calculus Test Three Page 96  Question 14
  \question
  Let~$f$ be a twice-differentiable function of~$x$ such that, when 
  $x = c$,~$f$ is decreasing, concave up, and has an $x$-intercept. Which of the following is true?
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice $f(c) < f'(c) < f''(c)$
    \choice $f(c) < f''(c)< f'(c)$
    \CorrectChoice $f'(c) < f(c) < f''(c)$
    \choice $f'(c) < f''(c) < f(c)$
    \choice $f''(c) < f(c) <  f'(c)$
  \end{choices}

  \vfill

  \newpage%\questiondiv

%Calculus Problem Book A.P. Calculus Test Four Section One Question 3
  \question
  Let~$f(x)$ be defined as below. Evaluate $\int_0^6 f(x)\,\mathrm{d}x$ 
  \[
    f(x) = \begin{cases}
      x & 0 < x \leq 2 \\
      1 & 2 < x \leq 4 \\
      \frac{x}{2} &  4 < x \leq 6
    \end{cases}
  \]
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \choice 5
    \choice 6
    \choice 7 
    \choice 8 
    \CorrectChoice 9
  \end{choices}

  \vfill

  \questiondiv

% Calculus Problem Book A.P. Calculus Test Five Section One Question 4
  \question
  Solve the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = y$ with 
  the initial condition that $y(0) = 1.$ From your solution, find the value of~$y(e)$
  \begin{choices}
    \renewcommand{\thepartno}{\Alph{partno}}
    \CorrectChoice $e^e$
    \choice $e$
    \choice $e-1$
    \choice $e^e - 1$
    \choice $e^2$
  \end{choices}

  \vfill
\end{questions}
\end{document}

为了实现自动化,请删除s之间的......\vfill内容,并将以下内容添加到序言中:\newpage\questiondiv\question

\let\oldquestions\questions
\renewcommand{\questions}{%
  \oldquestions%
  \let\oldquestion\question%
  \renewcommand{\question}{%
    \ifnum\value{question}>0% Not at first question
      \par\vfill% Insert space for question
      \ifodd\value{question}% Busy with an odd-numbered question
        \questiondiv% Insert \question division (\hrule)
      \else
        \clearpage% Insert page break
      \fi
    \fi
    \oldquestion% Issue regular question
  }
}
\let\endoldquestions\endquestions
\renewcommand{\endquestions}{%
  \vfill% Add space for last question
  \endoldquestions%
}

以上questions内容根据问题编号适应环境并插入适当的划分/分页符/垂直填充。

相关内容