我正在尝试格式化这份考试;但是,每页的问题数量太可怕了。第二页只有一个问题,下一页有几个问题,最后一页和第三页只有两个问题,这毫无逻辑可言。
有人能解释一下如何正确留出问题的空间以便有足够的空白来解决问题吗?
\documentclass[12pt]{exam}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{epstopdf}
\usepackage{amsmath}
\usepackage{paralist}
\usepackage{enumerate}
\usepackage{wrapfig}
\usepackage{xcolor}
\usepackage{graphicx}
\newcommand{\Lim}[1]{\raisebox{0.5ex}{\scalebox{0.8}{$\displaystyle \lim_{#1}\;$}}}
% \pagebreak[10]
\printanswers
\pagestyle{headandfoot}
\runningheadrule
\firstpageheader{AP Calculus Practice Exam A1}{ }{Senior 2}
\firstpageheadrule
\runningheader{AP Calculus Practice Exam A1} { Page \thepage\ of \numpages} {Senior 2 }
\firstpagefooter{}{}{Page \thepage\ of \numpages}
\runningfooter{}{\iflastpage{End of exam}{Please go on to the next page\ldots}}{Page \thepage\ of \numpages}
% For a visual definition of these parameters, see
% \textwidth = 6.5 in
% \textheight = 9 in
% \oddsidemargin = 0.0 in
% \evensidemargin = 0.0 in
% \topmargin = 0.0 in
% \headheight = 0.0 in
% \headsep = 0.0 in
% These problems were taken from Calculus Problem Book AP exams.
\begin{document}
\begin{titlepage}
\begin{center}
\textsc{\LARGE A.P. Practice Test:A1}\\[0.5cm]
\textsc{\LARGE Multiple-Choice}\\[0.5cm]
\textsc{\LARGE No Calculators}\\[0.5cm]
Time - 40 minutes\\
\end{center}
\vfill
\emph{Directions}: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is best of the choices given and clearly circle the choice. Do not spend too much time on any one problem.
\vfill
\begin{center} Good Luck\! \end{center}
\end{titlepage}
% These problems were taken from Calculus Problem Book AP exams.
\begin{questions}
% A.P. Calculus Test One Section One Problem 1
\begin{samepage}
\question Which of the following is continuous at $x = 0$ ?
\begin{center}
\begin{parts}
\renewcommand{\thepartno}{\Roman{partno}}
\part $f\left(x\right) = \vert x \vert$
\part $f\left(x\right) = e^{x}$
\part $f\left(x\right) = \ln\left(e^{x} - 1 \right)$
\end{parts}
\end{center}
\begin{oneparchoices}
\choice I only
\choice II only
\CorrectChoice I and II only
\choice II and III only
\choice none
\end{oneparchoices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 2
\question The graph of a function $f$ is reflected across the $x$-axis and then shifted up 2 units. Which of the following describes this transformation of $f$? \begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $-f\left(x\right)$
\choice $f\left(x\right) + 2$
\choice $-f\left(x + 2 \right)$
\choice $-f\left(x - 2 \right)$
\CorrectChoice $-f\left(x\right) + 2$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 3
\question Which of the following functions is \textit{not} continuous for all real numbers $x$?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $f\left(x\right) = x^{1/3}$
\CorrectChoice $f\left(x\right) = \dfrac{2}{\left(x + 1\right)^4}$
\choice $f\left(x\right) = \vert x + 1 \vert$
\choice $f\left(x\right) = \sqrt{1 + e^x}$
\choice $f\left(x\right) = \dfrac{x - 3}{x^2 + 9}$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 4
\question $\Lim{x \to 1} \dfrac{\ln x}{x}$ is
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 1
\CorrectChoice 0
\choice $e$
\choice $-e$
\choice nonexistent
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 5
\question $\Lim{x \to 0} \left( \dfrac{1}{x} + \dfrac{1}{x^2} \right) = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 0
\choice $\dfrac{1}{2}$
\choice 1
\choice 2
\CorrectChoice $\infty$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 6
\question $\Lim{x \to \infty} \dfrac{x^3 - 4x + 1}{2x^3 - 5} = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $-\dfrac{1}{5}$
\CorrectChoice $\dfrac{1}{2}$
\choice $\dfrac{2}{3}$
\choice 1
\choice Does not exist
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\newpage
\begin{samepage}
% A.P. Calculus Test One Section One Problem 7
\question For what value of $k$ does $\Lim{x \to 4} \dfrac{x^2 - x + k}{x - 4}$ exist?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\CorrectChoice -12
\choice -4
\choice 3
\choice 7
\choice No such value exists
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 8
\question $\Lim{x \to 0} \dfrac{\tan x}{x} = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice -1
\choice $-\dfrac{1}{2}$
\choice 0
\choice $-\dfrac{1}{2}$
\CorrectChoice 1
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 9
\question Suppose $f$ is defined as
\[f\left(x\right) = \begin{cases} \dfrac{\vert x \vert - 2}{x - 2} & x \neq 2 \\ k & x = 2 \end{cases}\]
Then the value of $k$ for which $f\left(x\right)$ is continuous for all real values of $x$ is $k = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice -2
\choice -1
\choice 0
\CorrectChoice 1
\choice 2
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\newpage
\begin{samepage}
% \hrule
% A.P. Calculus Test One Section One Problem 10
\question The average rate of change of $f\left(x\right) = x^3$ over the interval $[a,b]$ is
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $3b + 3a$
\CorrectChoice $b^2 + ab + a^2$
\choice $\dfrac{b^2 + a^2}{2}$
\choice $\dfrac{b^3 + a^3}{2}$
\choice $\dfrac{b^4 - a^4}{4\left(b - a\right)}$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 11
\question The function
\[ G\left(x\right) = \begin{cases} x - 5 & x > 2 \\
-5 & x = 2 \\
5x - 13 & x < 2 \end{cases} \]
is not continuous at $x = 2$ because
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $G\left(2\right)$ is not defined
\choice $\Lim{x \to 2} G\left(x\right)$ does not exist
\CorrectChoice $\Lim{x \to 2} G\left(x\right) \neq G\left(2\right)$
\choice $G\left(2\right) \neq -5$
\choice None of the above
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 12
\question $\Lim{x \to -2} \dfrac{\sqrt{2x + 5} -1}{x + 2} = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\CorrectChoice 1
\choice 0
\choice $\infty$
\choice $-\infty$
\choice Does not exist
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\newpage
\begin{samepage}
% \hrule
% A.P. Calculus Test One Section One Problem 13
\question The Intermediate Value Theorem states that given a continuous function $f$ defined on a closed interval $[a,b]$ for which 0 is between $f\left(a\right)$ and $f\left(b\right)$, there exists a point $c$ between $a$ and $b$ such that
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $c = a - b$
\choice $f\left(a\right) = f\left(b\right)$
\CorrectChoice $f\left(c\right) = 0$
\choice $f\left(0\right) = c$
\choice $c = 0$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 14
\question The function $t\left(x\right) = 2^x - \dfrac{\vert x - 3\vert}{x - 3}$ has
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice a removable discontinuity at $x = 3$
\choice an infinite discontinuity at $x = 3$
\CorrectChoice a jump discontinuity at $x = 3$
\choice no discontinuities
\choice a removable discontinuity at $x = 0$ and an infinite discontinuity at $x = 3$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% A.P. Calculus Test One Section One Problem 15
\question Find the values of $c$ so that the function
\[ h\left(x\right) = \begin{cases} c^2 - x^2 & x < 2 \\
x + c & x \geq 2 \end{cases}\]
is continuous everywhere
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice -3,-2
\choice 2,3
\CorrectChoice -2, 3
\choice -3, 2
\choice There are no such values
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\newpage
\begin{samepage}
% \hrule
% A.P. Calculus Test Two Section One Problem 4
\question If $F\left(x\right) = x \sin x$, then find $F^{\prime}\left(\dfrac{3\pi}{2}\right)$
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 0
\choice 1
\CorrectChoice -1
\choice $\dfrac{3\pi}{2}$
\choice $-\dfrac{3\pi}{2}$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% Calculus Problem Book A.P. Calculus Test Three Question 8
\question The position of a particle moving on the $x$-axis, starting at time $t=0$, is given by $x\left(t\right) = \left(t-a\right)^3\left(t-b\right)$, where $0 < a < b$. Which of the following statements are true?
\begin{center} \begin{parts}
\renewcommand{\thepartno}{\Roman{partno}}
\part The particle is at a positive position on the $x$-axis at time $t = \dfrac{a + b}{2}$
\part The particle is at rest at $t = a$
\part The particle is moving to the right at time $t=b$
\end{parts}\end{center}
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice I only
\choice II only
\CorrectChoice III only
\choice I and II only
\choice II and III only
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% Calculus Problem Book A.P. Calculus Test Three Page 96 Question 14
\question Let $f$ be a twice-differentiable function of $x$ such that, when $x = c$, $f$ is decreasing, concave up, and has an $x$-intercept. Which of the following is true?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $f\left(c\right) < f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right)$
\choice $f\left(c\right) < f^{\prime \prime}\left(c\right)< f^{\prime}\left(c\right) $
\CorrectChoice $ f^{\prime}\left(c\right) < f\left(c\right)< f^{\prime \prime}\left(c\right)$
\choice $ f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right) < f\left(c\right) $
\choice $f^{\prime \prime}\left(c\right) < f\left(c\right) < f^{\prime}\left(c\right) $
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
% \newpage
\begin{samepage}
% \hrule
% Calculus Problem Book A.P. Calculus Test Four Section One Question 3
\question Let $f\left(x\right)$ be defined as below. Evaluate $\int_0^6 f\left(x\right)\,\mathrm{d}x$
\[f\left(x\right) = \begin{cases} x & 0<x\leq 2 \\ 1 & 2 < x \leq 4 \\ \frac{x}{2} & 4 < x \leq 6
\end{cases}\]
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 5
\choice 6
\choice 7
\choice 8
\CorrectChoice 9
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\begin{samepage}
\hrule
% Calculus Problem Book A.P. Calculus Test Five Section One Question 4
\question Solve the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = y$ with the initial condition that $y\left(0\right) =1.$ From your solution, find the value of $y\left(e\right)$
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\CorrectChoice $e^e$
\choice $e$
\choice $e-1$
\choice $e^e - 1$
\choice $e^2$
\end{choices}
\end{samepage}
\vspace{\stretch{8}}
\end{questions}
\end{document}
答案1
考虑定义一些简单的标记来提高文档的可读性,但不要使用samepage
它;据我所知,它没有提供任何有用的功能。我用我定义的环境minipage
中的环境替换它myquestion
。
使用enumitem
( 的后继/替代)enumerate
,我还为问题定义了一种新的列表类型,pickmulti
您可以在其中从多个选项中进行选择。对于这些问题,我还定义了标签并使用引用,以便您可以随时更改编号方案。
pickmulti
做它的工作:
\documentclass[12pt]{exam}
\usepackage{amssymb, amsmath}
\usepackage{enumitem}
\usepackage{graphicx}
\newcommand{\Lim}[1]{\raisebox{0.5ex}{\scalebox{0.8}{$\displaystyle\lim_{#1}\;$}}}
% ^ Reconsider this how you typeset this.
\printanswers
\newenvironment{myquestion}{%
\ifodd\value{question}
%\rule{\linewidth}{1pt}\par
\hrule
\vspace{1em}
\fi
\minipage{\linewidth}%
}{%
\endminipage
\vspace{\stretch{1}}%
\ifodd\value{question}\else
\newpage
\fi
}
\newlist{pickmulti}{enumerate}{1}
\setlist[pickmulti]{
label=\Roman*.,
ref=(\Roman*)
}
%\pagestyle{headandfoot}
\firstpageheadrule
\firstpageheader{AP Calculus Practice Exam A1}{}{Senior 2}
\firstpagefooter{}{}{Page \thepage\ of \numpages}
\runningheadrule
\runningheader{AP Calculus Practice Exam A1}{Page \thepage\ of \numpages}{Senior 2}
\runningfooter{}{\iflastpage{End of exam}{Please go on to the next page\ldots}}{Page \thepage\ of \numpages}
% These problems were taken from Calculus Problem Book AP exams.
\begin{document}
\begin{titlepage}
\begin{center}
\LARGE\scshape
\setlength\parskip{0.5cm}
A.P. Practice Test: A1
Multiple-Choice
No Calculators
Time: 40 minutes
\end{center}
\vfill
\paragraph{Directions}
Solve each of the following problems,
using the available space for scratch work.
After examining the form of the choices,
decide which is best of the choices given and clearly circle the choice.
Do not spend too much time on any one problem.
\vfill
\begin{center}
Good Luck!
\end{center}
\end{titlepage}
% These problems were taken from Calculus Problem Book AP exams.
\begin{questions}
% A.P. Calculus Test One Section One Problem 1
\begin{myquestion}
\question
Which of the following is continuous at $x = 0$?
\begin{pickmulti}
\item \label{q:cont:abs(x)}
$f\left(x\right) = \vert x \vert$
\item \label{q:cont:e**x}
$f\left(x\right) = e^{x}$
\item \label{q:cont:ln(e**x-1)}
$f\left(x\right) = \ln\left(e^{x} - 1 \right)$
\end{pickmulti}
\begin{oneparchoices}
\choice \ref{q:cont:abs(x)} only
\choice \ref{q:cont:e**x} only
\CorrectChoice \ref{q:cont:abs(x)} and \ref{q:cont:e**x} only
\choice \ref{q:cont:e**x} and \ref{q:cont:ln(e**x-1)} only
\choice none
\end{oneparchoices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 2
\question
The graph of a function $f$ is reflected across the $x$-axis and then shifted up 2 units.
Which of the following describes this transformation of $f$?
\begin{choices}
\choice $-f\left(x\right)$
\choice $f\left(x\right) + 2$
\choice $-f\left(x + 2 \right)$
\choice $-f\left(x - 2 \right)$
\CorrectChoice $-f\left(x\right) + 2$
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 3
\question
Which of the following functions is \emph{not} continuous for all real numbers $x$?
\begin{choices}
\choice $f\left(x\right) = x^{1/3}$
\CorrectChoice $f\left(x\right) = \dfrac{2}{\left(x + 1\right)^4}$
\choice $f\left(x\right) = \vert x + 1 \vert$
\choice $f\left(x\right) = \sqrt{1 + e^x}$
\choice $f\left(x\right) = \dfrac{x - 3}{x^2 + 9}$
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 4
\question $\Lim{x \to 1} \dfrac{\ln x}{x}$ is
\begin{choices}
\choice 1
\CorrectChoice 0
\choice $e$
\choice $-e$
\choice non-existent
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 5
\question $\Lim{x \to 0} \left( \dfrac{1}{x} + \dfrac{1}{x^2} \right) = $
\begin{choices}
\choice 0
\choice $\dfrac{1}{2}$
\choice 1
\choice 2
\CorrectChoice $\infty$
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 6
\question $\Lim{x \to \infty} \dfrac{x^3 - 4x + 1}{2x^3 - 5} = $
\begin{choices}
\choice $-\dfrac{1}{5}$
\CorrectChoice $\dfrac{1}{2}$
\choice $\dfrac{2}{3}$
\choice 1
\choice Does not exist
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 7
\question For what value of $k$ does $\Lim{x \to 4} \dfrac{x^2 - x + k}{x - 4}$ exist?
\begin{choices}
\CorrectChoice $-12$
\choice $-4$
\choice 3
\choice 7
\choice No such value exists
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 8
\question $\Lim{x \to 0} \dfrac{\tan x}{x} = $
\begin{choices}
\choice $-1$
\choice $-\dfrac{1}{2}$
\choice 0
\choice $-\dfrac{1}{2}$
\CorrectChoice 1
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 9
\question
Suppose $f$ is defined as
\[
f\left(x\right) =
\begin{cases}
\dfrac{\vert x \vert - 2}{x - 2} & x \neq 2 \\
k & x = 2
\end{cases}
\]
Then the value of $k$ for which $f\left(x\right)$ is continuous for all real values of $x$ is $k = $
\begin{choices}
\choice $-2$
\choice $-1$
\choice 0
\CorrectChoice 1
\choice 2
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 10
\question The average rate of change of $f\left(x\right) = x^3$ over the interval $[a,b]$ is
\begin{choices}
\choice $3b + 3a$
\CorrectChoice $b^2 + ab + a^2$
\choice $\dfrac{b^2 + a^2}{2}$
\choice $\dfrac{b^3 + a^3}{2}$
\choice $\dfrac{b^4 - a^4}{4\left(b - a\right)}$
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 11
\question The function
\[
G\left(x\right) =
\begin{cases}
x - 5 & x > 2 \\
-5 & x = 2 \\
5x - 13 & x < 2
\end{cases}
\]
is not continuous at $x = 2$ because
\begin{choices}
\choice $G\left(2\right)$ is not defined
\choice $\Lim{x \to 2} G\left(x\right)$ does not exist
\CorrectChoice $\Lim{x \to 2} G\left(x\right) \neq G\left(2\right)$
\choice $G\left(2\right) \neq -5$
\choice None of the above
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 12
\question $\Lim{x \to -2} \dfrac{\sqrt{2x + 5} -1}{x + 2} = $
\begin{choices}
\CorrectChoice 1
\choice 0
\choice $\infty$
\choice $-\infty$
\choice Does not exist
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 13
\question
The Intermediate Value Theorem states that given a continuous
function $f$ defined on a closed interval $[a,b]$ for which 0 is
between $f\left(a\right)$ and $f\left(b\right)$, there exists a
point $c$ between $a$ and $b$ such that
\begin{choices}
\choice $c = a - b$
\choice $f\left(a\right) = f\left(b\right)$
\CorrectChoice $f\left(c\right) = 0$
\choice $f\left(0\right) = c$
\choice $c = 0$
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 14
\question The function $t\left(x\right) = 2^x - \dfrac{\vert x - 3\vert}{x - 3}$ has
\begin{choices}
\choice a removable discontinuity at $x = 3$
\choice an infinite discontinuity at $x = 3$
\CorrectChoice a jump discontinuity at $x = 3$
\choice no discontinuities
\choice a removable discontinuity at $x = 0$ and an infinite discontinuity at $x = 3$
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test One Section One Problem 15
\question Find the values of $c$ so that the function
\[
h\left(x\right) =
\begin{cases}
c^2 - x^2 & x < 2 \\
x + c & x \geq 2
\end{cases}
\]
is continuous everywhere
\begin{choices}
\choice $-3,-2$
\choice 2,3
\CorrectChoice $-2$, 3
\choice $-3$, $2$
\choice There are no such values
\end{choices}
\end{myquestion}
\begin{myquestion}
% A.P. Calculus Test Two Section One Problem 4
\question If $F\left(x\right) = x \sin x$, then find $F^{\prime}\left(\dfrac{3\pi}{2}\right)$
\begin{choices}
\choice 0
\choice 1
\CorrectChoice $-1$
\choice $\dfrac{3\pi}{2}$
\choice $-\dfrac{3\pi}{2}$
\end{choices}
\end{myquestion}
\begin{myquestion}
% Calculus Problem Book A.P. Calculus Test Three Question 8
\question
The position of a particle moving on the $x$-axis, starting at
time $t=0$, is given by $x\left(t\right) = \left( t - a \right)^3
\left( t - b \right)$, where $0 < a < b$. Which of the following
statements are true?
\begin{pickmulti}
\item \label{q:part:opt:pos}
The particle is at a positive position on the $x$-axis at time $t = \dfrac{a + b}{2}$
\item \label{q:part:opt:rest}
The particle is at rest at $t = a$
\item \label{q:part:opt:right}
The particle is moving to the right at time $t=b$
\end{pickmulti}
\begin{choices}
\choice \ref{q:part:opt:pos} only
\choice \ref{q:part:opt:rest} only
\CorrectChoice \ref{q:part:opt:right} only
\choice \ref{q:part:opt:pos} and \ref{q:part:opt:rest} only
\choice \ref{q:part:opt:rest} and \ref{q:part:opt:right} only
\end{choices}
\end{myquestion}
\begin{myquestion}
% Calculus Problem Book A.P. Calculus Test Three Page 96 Question 14
\question
Let $f$ be a twice-differentiable function of $x$ such that, when
$x = c$, $f$ is decreasing, concave up, and has an
$x$-intercept. Which of the following is true?
\begin{choices}
\choice $f\left(c\right) < f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right)$
\choice $f\left(c\right) < f^{\prime \prime}\left(c\right)< f^{\prime}\left(c\right) $
\CorrectChoice $ f^{\prime}\left(c\right) < f\left(c\right)< f^{\prime \prime}\left(c\right)$
\choice $ f^{\prime}\left(c\right) < f^{\prime \prime}\left(c\right) < f\left(c\right) $
\choice $f^{\prime \prime}\left(c\right) < f\left(c\right) < f^{\prime}\left(c\right) $
\end{choices}
\end{myquestion}
\begin{myquestion}
% Calculus Problem Book A.P. Calculus Test Four Section One Question 3
\question
Let $f\left(x\right)$ be defined as below.
Evaluate $\int_0^6 f\left(x\right)\,\mathrm{d}x$ where
\[
f\left(x\right) =
\begin{cases}
x & 0<x\leq 2 \\
1 & 2 < x \leq 4 \\
\frac{x}{2} & 4 < x \leq 6
\end{cases}
\]
\begin{choices}
\choice 5
\choice 6
\choice 7
\choice 8
\CorrectChoice 9
\end{choices}
\end{myquestion}
\begin{myquestion}
% Calculus Problem Book A.P. Calculus Test Five Section One Question 4
\question
Solve the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = y$
with the initial condition that $y\left(0\right) = 1$.
From your solution, find the value of $y\left(e\right)$
\begin{choices}
\CorrectChoice $e^e$
\choice $e$
\choice $e-1$
\choice $e^e - 1$
\choice $e^2$
\end{choices}
\end{myquestion}
\end{questions}
\end{document}
答案2
我会在每页上放置两个问题,每个问题都有一个\vfill
中间项和一个强制\newpage
后续项(这可以自动化;见下文)。
使用下面的每个问题会在同一页内留下相等的空间。如果您希望从一页到下一页\vfill
有相同的水平线( ),也可以通过一些计算来实现。\questiondiv
\documentclass[12pt]{exam}% http://ctan.org/pkg/exam
\usepackage{amsmath}% http://ctan.org/pkg/amsmath
\printanswers
\pagestyle{headandfoot}
\runningheadrule
\firstpageheader{AP Calculus Practice Exam A1}{ }{Senior 2}
\firstpageheadrule
\runningheader{AP Calculus Practice Exam A1} { Page \thepage\ of \numpages} {Senior 2 }
\firstpagefooter{}{}{Page \thepage\ of \numpages}
\runningfooter{}{\iflastpage{End of exam}{Please go on to the next page\ldots}}{Page \thepage\ of \numpages}
% For a visual definition of these parameters, see
%\textwidth = 6.5 in
%\textheight = 9 in
%\oddsidemargin = 0.0 in
%\evensidemargin = 0.0 in
%\topmargin = 0.0 in
%\headheight = 0.0 in
%\headsep = 0.0 in
\newcommand{\questiondiv}{\hrule}
%These problems were taken from Calculus Problem Book AP exams.
\begin{document}
\begin{titlepage}
\begin{center}
\textsc{\LARGE A.P. Practice Test: A1}\\[0.5cm]
\textsc{\LARGE Multiple-Choice}\\[0.5cm]
\textsc{\LARGE No Calculators}\\[0.5cm]
Time - 40 minutes\\
\vfill
\emph{Directions}: Solve each of the following problems, using the available space for
scratch work. After examining the form of the choices, decide which is best of the
choices given and clearly circle the choice. Do not spend too much time on any one problem.
\vfill
Good Luck!
\end{center}
\end{titlepage}
%These problems were taken from Calculus Problem Book AP exams.
\begin{questions}
% A.P. Calculus Test One Section One Problem 1
\question
Which of the following is continuous at $x = 0$ ?
\begin{parts}
\renewcommand{\thepartno}{\Roman{partno}}
\part $f(x) = \vert x \vert$
\part $f(x) = e^{x}$
\part $f(x) = \ln\bigl(e^{x} - 1 \bigr)$
\end{parts}
\begin{oneparchoices}
\choice I only
\choice II only
\CorrectChoice I and II only
\choice II and III only
\choice none
\end{oneparchoices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 2
\question
The graph of a function~$f$ is reflected across the $x$-axis and then shifted
up~2 units. Which of the following describes this transformation of~$f$?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $-f(x)$
\choice $f(x) + 2$
\choice $-f(x + 2)$
\choice $-f(x - 2)$
\CorrectChoice $-f(x) + 2$
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 3
\question
Which of the following functions is \emph{not\/} continuous for all real numbers~$x$?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $f(x) = x^{1/3}$
\CorrectChoice $f(x) = \dfrac{2}{(x + 1)^4}$
\choice $f(x) = \vert x + 1 \vert$
\choice $f(x) = \sqrt{1 + e^x}$
\choice $f(x) = \dfrac{x - 3}{x^2 + 9}$
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 4
\question
$\displaystyle \lim_{x \to 1} \dfrac{\ln x}{x}$ is
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 1
\CorrectChoice 0
\choice $e$
\choice $-e$
\choice nonexistent
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 5
\question
$\displaystyle \lim_{x \to 0} \biggl( \dfrac{1}{x} + \dfrac{1}{x^2} \biggr) = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 0
\choice $\dfrac{1}{2}$
\choice 1
\choice 2
\CorrectChoice $\infty$
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 6
\question
$\displaystyle \lim_{x \to \infty} \dfrac{x^3 - 4x + 1}{2x^3 - 5} = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $-\dfrac{1}{5}$
\CorrectChoice $\dfrac{1}{2}$
\choice $\dfrac{2}{3}$
\choice 1
\choice Does not exist
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 7
\question
For what value of~$k$ does $\displaystyle \lim_{x \to 4} \dfrac{x^2 - x + k}{x - 4}$ exist?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\CorrectChoice -12
\choice -4
\choice 3
\choice 7
\choice No such value exists
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 8
\question
$\displaystyle \lim_{x \to 0} \dfrac{\tan x}{x} = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice -1
\choice $-\dfrac{1}{2}$
\choice 0
\choice $-\dfrac{1}{2}$
\CorrectChoice 1
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 9
\question
Suppose~$f$ is defined as
\[
f(x) = \begin{cases}
\dfrac{\vert x \vert - 2}{x - 2} & x \neq 2 \\
k & x = 2
\end{cases}
\]
Then the value of~$k$ for which~$f(x)$ is continuous for all real values of~$x$ is $k = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice -2
\choice -1
\choice 0
\CorrectChoice 1
\choice 2
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 10
\question
The average rate of change of $f(x) = x^3$ over the interval $[a,b]$ is
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $3b + 3a$
\CorrectChoice $b^2 + ab + a^2$
\choice $\dfrac{b^2 + a^2}{2}$
\choice $\dfrac{b^3 + a^3}{2}$
\choice $\dfrac{b^4 - a^4}{4(b - a)}$
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 11
\question
The function
\[
G(x) = \begin{cases} x - 5 & x > 2 \\
-5 & x = 2 \\
5x - 13 & x < 2
\end{cases}
\]
is not continuous at $x = 2$ because
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $G(2)$ is not defined
\choice $\displaystyle \lim_{x \to 2} G(x)$ does not exist
\CorrectChoice $\lim_{x \to 2} G(x) \neq G(2)$
\choice $G(2) \neq -5$
\choice None of the above
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 12
\question
$\displaystyle \lim_{x \to -2} \dfrac{\sqrt{2x + 5} -1}{x + 2} = $
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\CorrectChoice 1
\choice 0
\choice $\infty$
\choice $-\infty$
\choice Does not exist
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 13
\question
The Intermediate Value Theorem states that given a continuous function~$f$
defined on a closed interval $[a,b]$ for which~0 is between~$f(a)$ and~$f(b)$,
there exists a point~$c$ between~$a$ and~$b$ such that
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $c = a - b$
\choice $f(a) = f(b)$
\CorrectChoice $f(c) = 0$
\choice $f(0) = c$
\choice $c = 0$
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test One Section One Problem 14
\question
The function $t(x) = 2^x - \dfrac{\vert x - 3\vert}{x - 3}$ has
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice a removable discontinuity at $x = 3$
\choice an infinite discontinuity at $x = 3$
\CorrectChoice a jump discontinuity at $x = 3$
\choice no discontinuities
\choice a removable discontinuity at $x = 0$ and an infinite discontinuity at $x = 3$
\end{choices}
\vfill
\newpage%\questiondiv
% A.P. Calculus Test One Section One Problem 15
\question
Find the values of~$c$ so that the function
\[
h(x) = \begin{cases}
c^2 - x^2 & x < 2 \\
x + c & x \geq 2
\end{cases}
\]
is continuous everywhere
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $-3,-2$
\choice $2,3$
\CorrectChoice $-2, 3$
\choice $-3,2$
\choice There are no such values
\end{choices}
\vfill
\questiondiv
% A.P. Calculus Test Two Section One Problem 4
\question
If $F(x) = x \sin x$, then find $F^{\prime}F(\tfrac{3\pi}{2})$
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 0
\choice 1
\CorrectChoice $-1$
\choice $\tfrac{3\pi}{2}$
\choice $-\tfrac{3\pi}{2}$
\end{choices}
\vfill
\newpage%\questiondiv
% Calculus Problem Book A.P. Calculus Test Three Question 8
\question
The position of a particle moving on the $x$-axis, starting at time $t=0$,
is given by $x(t) = (t-a)^3(t-b)$, where $0 < a < b$. Which of the following
statements are true?
\begin{parts}
\renewcommand{\thepartno}{\Roman{partno}}
\part The particle is at a positive position on the $x$-axis at time $t = \dfrac{a + b}{2}$
\part The particle is at rest at $t = a$
\part The particle is moving to the right at time $t=b$
\end{parts}
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice I only
\choice II only
\CorrectChoice III only
\choice I and II only
\choice II and III only
\end{choices}
\vfill
\questiondiv
% Calculus Problem Book A.P. Calculus Test Three Page 96 Question 14
\question
Let~$f$ be a twice-differentiable function of~$x$ such that, when
$x = c$,~$f$ is decreasing, concave up, and has an $x$-intercept. Which of the following is true?
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice $f(c) < f'(c) < f''(c)$
\choice $f(c) < f''(c)< f'(c)$
\CorrectChoice $f'(c) < f(c) < f''(c)$
\choice $f'(c) < f''(c) < f(c)$
\choice $f''(c) < f(c) < f'(c)$
\end{choices}
\vfill
\newpage%\questiondiv
%Calculus Problem Book A.P. Calculus Test Four Section One Question 3
\question
Let~$f(x)$ be defined as below. Evaluate $\int_0^6 f(x)\,\mathrm{d}x$
\[
f(x) = \begin{cases}
x & 0 < x \leq 2 \\
1 & 2 < x \leq 4 \\
\frac{x}{2} & 4 < x \leq 6
\end{cases}
\]
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\choice 5
\choice 6
\choice 7
\choice 8
\CorrectChoice 9
\end{choices}
\vfill
\questiondiv
% Calculus Problem Book A.P. Calculus Test Five Section One Question 4
\question
Solve the differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = y$ with
the initial condition that $y(0) = 1.$ From your solution, find the value of~$y(e)$
\begin{choices}
\renewcommand{\thepartno}{\Alph{partno}}
\CorrectChoice $e^e$
\choice $e$
\choice $e-1$
\choice $e^e - 1$
\choice $e^2$
\end{choices}
\vfill
\end{questions}
\end{document}
为了实现自动化,请删除s之间的......\vfill
内容,并将以下内容添加到序言中:\newpage
\questiondiv
\question
\let\oldquestions\questions
\renewcommand{\questions}{%
\oldquestions%
\let\oldquestion\question%
\renewcommand{\question}{%
\ifnum\value{question}>0% Not at first question
\par\vfill% Insert space for question
\ifodd\value{question}% Busy with an odd-numbered question
\questiondiv% Insert \question division (\hrule)
\else
\clearpage% Insert page break
\fi
\fi
\oldquestion% Issue regular question
}
}
\let\endoldquestions\endquestions
\renewcommand{\endquestions}{%
\vfill% Add space for last question
\endoldquestions%
}
以上questions
内容根据问题编号适应环境并插入适当的划分/分页符/垂直填充。