如何修改eqnarray?

如何修改eqnarray?

我目前正在使用 Texmaker 撰写数学本科论文,当我使用时eqnarray。它不断将所有方程式向右对齐,但仍在中心?

我该如何改变它,让它们在左侧对齐(但仍在中心)?也就是说,让所有等号都对齐?例如:

\documentclass[11pt]{article}
\usepackage{amsmath}

\begin{document} 
  \begin{eqnarray}
    \dfrac{d }{dx} \dfrac{y'}{\sqrt{1+(y')^2}} = 0\\
    \Rightarrow \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}}=0\\
    \Rightarrow \displaystyle\int_b^a \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} \,dx= constant = C\\
    \Rightarrow f'(x) = \dfrac{C}{\sqrt{1-C^2}} = m\\
    \Rightarrow \quad f(x) = mx+ \text{constant}
  \end{eqnarray}
\end{document}

答案1

eqnarray环境旨在实现“左中右”对齐的方程数组。您必须用&符号标记对齐方式(将每个更改=&=&):

\dfrac{d }{dx} \dfrac{y'}{\sqrt{1+(y')^2}} &=& 0\\
\Rightarrow \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}}&=&0\\
\Rightarrow \displaystyle\int_b^a \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} \,dx= constant &=& C\\
\Rightarrow f'(x) = \dfrac{C}{\sqrt{1-C^2}} &=& m\\
\Rightarrow \quad f(x) &=& mx+ \text{constant}
\end{eqnarray}

eqnarray对于方程数组来说,这不是一个好的解决方案,因为方程项之间的间距与其他数学表达式中的间距不一致。使用amsmath包和align环境(这里,&每个方程只需要一个):

\begin{align}
\dfrac{d }{dx} \dfrac{y'}{\sqrt{1+(y')^2}} &= 0\\
\Rightarrow \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}}&=0\\
\Rightarrow \displaystyle\int_b^a \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} \,dx= constant &= C\\
\Rightarrow f'(x) = \dfrac{C}{\sqrt{1-C^2}} &= m\\
\Rightarrow \quad f(x) &= mx+ \text{constant}
\end{align}

答案2

环境alignat来自 »数学“使对齐更容易。并且”物理« 简化了衍生产品的排版。

\documentclass[11pt]{article}
\usepackage[T1]{fontenc}
\usepackage{amsmath}
\usepackage{physics}

\begin{document}
  \begin{alignat}{2}
                      && \dv{x}\,\frac{y'}{\sqrt{1+(y')^2}} &= 0 \\
    \Rightarrow\qquad && \dv{x}\,\frac{f'(x)}{\sqrt{1+(f'(x))^2}} &= 0 \\
    \Rightarrow\qquad && \int_b^a \dv{x} \frac{f'(x)}{\sqrt{1+(f'(x))^2}}\,\dd x &= \text{constant} = C \\
    \Rightarrow\qquad && f'(x) &= \frac{C}{\sqrt{1-C^2}} = m \\
    \Rightarrow\qquad && f(x) &= mx+\text{constant}
  \end{alignat}
\end{document}

有关高级数学排版的更多信息,请参阅 »数学模式“ 文档。


在此处输入图片描述

答案3

一个可能的解决方案:

\documentclass{article}

\usepackage{amsmath}

\newcommand*\differential[1]{\mathop{}\!\mathrm{d}#1}
\newcommand*\diff[3][\differential]{\frac{#1#2}{#1#3}}

\begin{document} 

\begin{alignat}{2}
  &&\diff{}{x}\frac{y'}{\sqrt{1+(y')^{2}}}
  &= 0\\
  &\Rightarrow
  &\diff{}{x}\frac{f'(x)}{\sqrt{1+(f'(x))^{2}}}
  &= 0\\
  &\Rightarrow\quad
  &\int_{b}^{a} \diff{}{x}\frac{f'(x)}{\sqrt{1+(f'(x))^{2}}} \differential{x}
  &= \text{constant}
   = C\\
  &\Rightarrow
  &f'(x)
  &= \frac{C}{\sqrt{1-C^{2}}}
   = m\\
  &\Rightarrow
  &f(x)
  &= mx + \text{constant}
\end{alignat}

\end{document}

输出1

注意:\mathrm如果您不想让差速器d直立,请将其移除。

(记得避免eqnarray

更新

如果希望方程式之间有垂直箭头,可以使用以下方法:

\documentclass{article}

\usepackage{mathtools}

\newcommand*\differential[1]{\mathop{}\!\mathrm{d}#1}
\newcommand*\diff[3][\differential]{\frac{#1#2}{#1#3}}
\newcommand*\arrowDown{\ArrowBetweenLines[\Downarrow]}

\begin{document}

\begin{alignat}{2}
  &&\diff{}{x}\frac{y'}{\sqrt{1+(y')^{2}}}
  &= 0\\
  \arrowDown
  &&\diff{}{x}\frac{f'(x)}{\sqrt{1+(f'(x))^{2}}}
  &= 0\\
  \arrowDown
  &&\int_{b}^{a} \diff{}{x}\frac{f'(x)}{\sqrt{1+(f'(x))^{2}}} \differential{x}
  &= \text{constant}
   = C\\
  \arrowDown
  &&f'(x)
  &= \frac{C}{\sqrt{1-C^{2}}}
   = m\\
  \arrowDown
  &&f(x)
  &= mx + \text{constant}
\end{alignat}

\end{document}

输出2

答案4

您已在使用amsmath

\documentclass[11pt]{article}
\usepackage{amsmath}

\begin{document} 
  \begin{align}
                \dfrac{d }{dx} \dfrac{y'}{\sqrt{1+(y')^2}}       &= 0\\
    \Rightarrow \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} &=0\\
    \Rightarrow \displaystyle\int_b^a \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} \,dx &= constant = C\\
    \Rightarrow f'(x) = \dfrac{C}{\sqrt{1-C^2}}                  &= m\\
    \Rightarrow \quad f(x)                                       &= mx+ \text{constant}
  \end{align}
\end{document}

或者

  \begin{align}
    &&\dfrac{d }{dx} \dfrac{y'}{\sqrt{1+(y')^2}} &= 0\\
    \Rightarrow &&\dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} &=0\\
    \Rightarrow &&\displaystyle\int_b^a \dfrac{d }{dx} \dfrac{f'(x)}{\sqrt{1+(f'(x))^2}} \,dx &= constant = C\\
    \Rightarrow &&f'(x) = \dfrac{C}{\sqrt{1-C^2}} &= m\\
    \Rightarrow &&\quad f(x) &= mx+ \text{constant}
  \end{align}

字符&用于水平对齐。请参阅http://mirror.ctan.org/info/math/voss/mathmode/Mathmode.pdf

顺便说一下:eqnarray语法如下:left & middle & right

相关内容