\begin{frame}
Find the 2nd derivative, locate local extrema, find the points of inflection,
and discuss concavity, for the function $f(x)= x^{3} + 10x^{2} + 25x -50}$.
\begin{displaymath}
f'(x)= 3x^{2} + 20x + 25 = 0
\end{displaymath}.
We find critical points at $\frac{-5}{3},\frac{137}{2}$.
Find the 2nd derivative, $f(x)=6x+20=0$, which gives us possible points of inflection.
\end{frame}
\end{document}
答案1
}
这一行末尾还有一个额外内容:
and discuss concavity, for the function $f(x)= x^{3} + 10x^{2} + 25x -50}$
我不确定这是否会导致您提到的错误,但是,现在可以编译:
\documentclass{beamer}
\begin{document}
\begin{frame}
Find the 2nd derivative, locate local extrema, find the points of inflection,
and discuss concavity, for the function $f(x)= x^{3} + 10x^{2} + 25x -50$.
\[
f'(x)= 3x^{2} + 20x + 25 = 0
\]
We find critical points at $\frac{-5}{3},\frac{137}{2}$.
Find the 2nd derivative, $f(x)=6x+20=0$, which gives us possible points of inflection.
\end{frame}
\end{document}
注意我已经将displaymath
环境替换为\[...\]
更短且具有相同效果的环境。下次,请发布完整的最小工作示例,正如 Jubobs 在评论中所要求的那样。