输入行 181 上的 \begin{frame} 由 \end{beamer@framepauses} 结束。 \end{frame}

输入行 181 上的 \begin{frame} 由 \end{beamer@framepauses} 结束。 \end{frame}
\begin{frame}
Find the 2nd derivative, locate local extrema, find the points of inflection,
and discuss concavity, for the function $f(x)= x^{3} + 10x^{2} + 25x -50}$.

\begin{displaymath}
    f'(x)= 3x^{2} + 20x + 25 = 0
\end{displaymath}.
We find critical points at $\frac{-5}{3},\frac{137}{2}$.
Find the 2nd derivative, $f(x)=6x+20=0$, which gives us possible points of inflection.
\end{frame}
\end{document}

答案1

}这一行末尾还有一个额外内容:

and discuss concavity, for the function $f(x)= x^{3} + 10x^{2} + 25x -50}$

我不确定这是否会导致您提到的错误,但是,现在可以编译:

\documentclass{beamer}

\begin{document}
\begin{frame}
Find the 2nd derivative, locate local extrema, find the points of inflection,
and discuss concavity, for the function $f(x)= x^{3} + 10x^{2} + 25x -50$.

\[
    f'(x)= 3x^{2} + 20x + 25 = 0
\]
We find critical points at $\frac{-5}{3},\frac{137}{2}$.
Find the 2nd derivative, $f(x)=6x+20=0$, which gives us possible points of inflection.
\end{frame}
\end{document}

注意我已经将displaymath环境替换为\[...\]更短且具有相同效果的环境。下次,请发布完整的最小工作示例,正如 Jubobs 在评论中所要求的那样。

相关内容