我有一个由两个包含一些方程式的块组成的 Beamer 框架:
\begin{frame}
\frametitle{Modell}
\begin{block}{A $(X_{t})$}
\begin{align*}
X_{t} = \epsilon_{t} \quad \text{mit} \quad \epsilon_{t}
\overset{iid}{\sim} \mathcal{N}\left(0, \sigma_{X}^{2}\right)
\end{align*}
\end{block}
\begin{block}{B $(Y_{t})$}
\begin{align*}
Y_{t} &= \sigma_{Y,t}\: \eta_{t}, \\ \sigma_{Y,t}^{2} &= \omega + \alpha_{Y} Y_{t-1}^{2} + \beta_{Y}\sigma_{Y,t-1}^{2} \quad \text{mit} \quad \sqrt{\frac{\nu}{\nu-2}}\cdot \eta_{t} \overset{iid}{\sim} t\left(\nu\right).
\end{align*}
\end{block}
\end{frame}
我想喜欢全部等号要对齐,换句话说,我希望在两个块之间对齐。通常我会使用,intertext
但由于我正在处理两个块环境,所以我认为这行不通。
谢谢!
答案1
这是一种可能性。使用幻像在块 1 中重复块 2 的最长方程。
代码
\documentclass{beamer}
\usepackage{tikz}
\usetikzlibrary{matrix}
\begin{document}
\begin{frame}
\frametitle{Modell}
\begin{block}{A $(X_{t})$}
\begin{align*}
X_{t} &= \epsilon_{t} \quad \text{mit} \quad \epsilon_{t}
\overset{iid}{\sim} \mathcal{N}\left(0, \sigma_{X}^{2}\right)\\
\phantom{\sigma_{Y,t}^{2}} &\phantom{= \omega + \alpha_{Y} Y_{t-1}^{2} + \beta_{Y}\sigma_{Y,t-1}^{2} \quad \text{mit} \quad \sqrt{\frac{\nu}{\nu-2}}\cdot \eta_{t} \overset{iid}{\sim} t\left(\nu\right).}
\end{align*}
\end{block}
\begin{block}{B $(Y_{t})$}
\begin{align*}
Y_{t} &= \sigma_{Y,t}\: \eta_{t}, \\ \sigma_{Y,t}^{2} &= \omega + \alpha_{Y} Y_{t-1}^{2} + \beta_{Y}\sigma_{Y,t-1}^{2} \quad \text{mit} \quad \sqrt{\frac{\nu}{\nu-2}}\cdot \eta_{t} \overset{iid}{\sim} t\left(\nu\right).
\end{align*}
\end{block}
\end{frame}
\end{document}
答案2
带有动态放置且不带有\hphantom
:
\documentclass{beamer}
\usepackage{tikz,array}
\usetikzlibrary{matrix}
\newlength{\myl}
\newcolumntype{Z}{>{\rule{0pt}{1.4em}\hfill$}m{\myl}<{$}}
\newenvironment{MyAlign}{%
\setlength{\arraycolsep}{1.5pt}%
\smallskip
$\begin{array}{Zcl}
}{%
\end{array}$
\smallskip
}
\begin{document}
\begin{frame}
\setlength{\myl}{1cm}
\frametitle{Modell}
\begin{block}{A $(X_{t})$}
\begin{MyAlign}
X_{t} &=& \epsilon_{t} \quad \text{mit} \quad \epsilon_{t}
\overset{iid}{\sim} \mathcal{N}\left(0, \sigma_{X}^{2}\right)\\
\end{MyAlign}
\end{block}
\begin{block}{B $(Y_{t})$}
\begin{MyAlign}
Y_{t} &=& \sigma_{Y,t}\: \eta_{t}, \\
\sigma_{Y,t}^{2} &=& \omega + \alpha_{Y} Y_{t-1}^{2} + \beta_{Y}\sigma_{Y,t-1}^{2} \quad \text{mit} \quad \sqrt{\frac{\nu}{\nu-2}}\cdot \eta_{t} \overset{iid}{\sim} t\left(\nu\right).\\
\end{MyAlign}
\end{block}
\end{frame}
\end{document}