很难找到为什么输出不正确的原因。
$
\text{ Let there be a right triangle with angle A (not with measurement 90 deg) } \\
\text{ whose adjacent has measurement } 3 \text{ and whose opposite has measurement } 2 \\
\text{ therefore the hypotenuse of the triangle has measurement } \sqrt{13} \\
\text{ so this means } \sin(A)=\frac{2}{\sqrt{13}} \text{ and } \cos(A)=\frac{3}{\sqrt{13}} \\
3 \sin(x)+2 \cos(x)=\sqrt{13}(\frac{3}{\sqrt{13}} \sin(x)+\frac{2}{\sqrt{13}} \cos(x)) \\
=\sqrt{13}(\cos(A) \sin(x)+\sin(A) \cos(x)) =\sqrt{13} \sin(x+A) \\
2 \sin(x)+3 \cos(x) = \sqrt{13}(\frac{2}{\sqrt{13}} \sin(x)+\frac{3}{\sqrt{13}} \cos(x)) \\
=\sqrt{13}(\sin(A) \sin(x)+\cos(A) \cos(x)) =\sqrt{13} \cos(x-A) \\
\text{… } \\
\int \frac{ 3 \sin(x)+2 \cos(x)}{ 2 \sin(x)+3 \cos(x) } dx= \int \frac{\sqrt{13} \sin(x+A) }{\sqrt{13} \cos(x-A) } dx \\
=\int \frac{ \sin(x-A+2A)} {\cos(x-A)} dx=\int \frac{ \sin(x-A) \cos(2A)+ \sin(2A) \cos(x-A)}{\cos(x-A)} dx \\ =\cos(2A) \int \frac{ \sin(x-A)}{\cos(x-A)} dx+ \sin(2A) \int \frac{\cos(x-A)}{\cos(x-A)} dx\\
=(\cos^2(A)-\sin^2(A)) \int \frac{\sin(x-A)}{\cos(x-A)} dx+2 \sin(A) \cos(A) \int 1 dx \\
=((\frac{3}{\sqrt{13}})^2-(\frac{2}{\sqrt{13}})^2) \int \frac{-du}{u} +2 \frac{2}{\sqrt{13}} \frac{3}{\sqrt{13}} x +C \\
\text{ (note: where } u=\cos(x-A) \text{ and so } du=-\sin(x-A) dx \text{ ) } \\
=(\frac{9}{13}-\frac{4}{13}) (- \ln|u|)+\frac{12}{13} x+C \\
=- \frac{5}{13} \ln|\cos(x-A)| +\frac{12}{13}x+C \\
=-\frac{5}{13} \ln|\cos(x) \cos(A)+\sin(x) \sin(A)|+\frac{12}{13}x+C \\
=-\frac{5}{13} \ln|\cos(x) \frac{3}{\sqrt{13}}+ \sin(x) \frac{2}{\sqrt{13}}|+\frac{12}{13}x+C \\
=-\frac{5}{13} \ln| \frac{1}{\sqrt{13}} (3 \cos(x)+2 \sin(x))| +\frac{12}{13}x+C \\
=-\frac{5}{13} \ln|\frac{1}{\sqrt{13}}|-\frac{5}{13} \ln|3 \cos(x)+2 \sin(x)|+\frac{12}{13}x+C \\
=-\frac{5}{13} \ln|3 \cos(x)+2 \sin(x)|+\frac{12}{13}x-\frac{5}{13} \ln|\frac{1}{\sqrt{13}}|+C \\
=-\frac{5}{13} \ln|3 \cos(x)+2 \sin(x)|+\frac{12}{13}x+K \\
$
答案1
这仍然有点太宽了,但是
\documentclass{article}
\usepackage{amsmath}
\begin{document}
Let there be a right triangle with angle $A$ (not with measurement 90 deg)
whose adjacent has measurement 3 and whose opposite has measurement 2
therefore the hypotenuse of the triangle has measurement $\sqrt{13}$
so this means
\[
\sin(A)=\frac{2}{\sqrt{13}} \text{ and } \cos(A)=\frac{3}{\sqrt{13}}
\]
Then
\begin{align*}
3 \sin(x)+2 \cos(x)&=\sqrt{13}(\frac{3}{\sqrt{13}} \sin(x)+\frac{2}{\sqrt{13}} \cos(x)) \\
&=\sqrt{13}(\cos(A) \sin(x)+\sin(A) \cos(x))\\
& =\sqrt{13} \sin(x+A)
\end{align*}
???
\begin{align*}
2 \sin(x)+3 \cos(x) &= \sqrt{13}(\frac{2}{\sqrt{13}} \sin(x)+\frac{3}{\sqrt{13}} \cos(x)) \\
&=\sqrt{13}(\sin(A) \sin(x)+\cos(A) \cos(x))\\
& =\sqrt{13} \cos(x-A) \\
\ldots
\end{align*}
???
\begin{align*}
\int \frac{ 3 \sin(x)+2 \cos(x)}{ 2 \sin(x)+3 \cos(x) } dx&= \int \frac{\sqrt{13} \sin(x+A) }{\sqrt{13} \cos(x-A) } dx \\
&=\int \frac{ \sin(x-A+2A)} {\cos(x-A)} dx\\
&=\int \frac{ \sin(x-A) \cos(2A)+ \sin(2A) \cos(x-A)}{\cos(x-A)} dx \\
&=\cos(2A) \int \frac{ \sin(x-A)}{\cos(x-A)} dx+ \sin(2A) \int \frac{\cos(x-A)}{\cos(x-A)} dx\\
&=(\cos^2(A)-\sin^2(A)) \int \frac{\sin(x-A)}{\cos(x-A)} dx+2 \sin(A) \cos(A) \int 1 dx \\
&=((\frac{3}{\sqrt{13}})^2-(\frac{2}{\sqrt{13}})^2) \int \frac{-du}{u} +2 \frac{2}{\sqrt{13}} \frac{3}{\sqrt{13}} x +C
\intertext{
(note: where $u=\cos(x-A)$ and so $du=-\sin(x-A) dx$
}
&=(\frac{9}{13}-\frac{4}{13}) (- \ln|u|)+\frac{12}{13} x+C \\
&=- \frac{5}{13} \ln|\cos(x-A)| +\frac{12}{13}x+C \\
&=-\frac{5}{13} \ln|\cos(x) \cos(A)+\sin(x) \sin(A)|+\frac{12}{13}x+C \\
&=-\frac{5}{13} \ln|\cos(x) \frac{3}{\sqrt{13}}+ \sin(x) \frac{2}{\sqrt{13}}|+\frac{12}{13}x+C \\
&=-\frac{5}{13} \ln| \frac{1}{\sqrt{13}} (3 \cos(x)+2 \sin(x))| +\frac{12}{13}x+C \\
&=-\frac{5}{13} \ln|\frac{1}{\sqrt{13}}|-\frac{5}{13} \ln|3 \cos(x)+2 \sin(x)|+\frac{12}{13}x+C \\
&=-\frac{5}{13} \ln|3 \cos(x)+2 \sin(x)|+\frac{12}{13}x-\frac{5}{13} \ln|\frac{1}{\sqrt{13}}|+C \\
&=-\frac{5}{13} \ln|3 \cos(x)+2 \sin(x)|+\frac{12}{13}x+K
\end{align*}
\end{document}
答案2
这里有一些更简洁的内容。我使用该nccmath
包获取中等大小(数字)分数,并mathtools
定义\abs
具有正确间距和可变大小的命令(绝对值)。最后,我\d
为微分定义了一个命令,具有正确的间距和直立的 d:
\documentclass[11pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{mathtools, nccmath}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}
\AtBeginDocument{\renewcommand*{\d}{\mathop{\kern0pt\mathrm{d}}\!{}}}%
\usepackage{siunitx}
\begin{document}
Let there be a right triangle with angle $ A $ (not with measurement \SI{90}{\deg } whose adjacent has measurement $ 3 $ and whose opposite has measurement $ 2 $, therefore the hypotenuse of the triangle has measurement $ \sqrt{13} $. So this means:
\begin{align*}
& \sin A =\mfrac{2}{\sqrt{13}} \text{ and } \cos A =\mfrac{3}{\sqrt{13}} \\
3 \sin x +2 \cos x & =\sqrt{13}\Bigl(\mfrac{3}{\sqrt{13}} \sin x +\mfrac{2}{\sqrt{13}} \cos x \Bigr) \\
& =\sqrt{13}\bigl(\cos A \sin x +\sin A \cos x \bigr) =\sqrt{13} \sin(x+A) \\
2 \sin x +3 \cos x & = \sqrt{13}\Bigl(\mfrac{2}{\sqrt{13}} \sin x +\mfrac{3}{\sqrt{13}} \cos x\Bigr) \\
& =\sqrt{13}(\sin A \sin x +\cos A \cos x ) =\sqrt{13} \cos(x-A) \\
\shortintertext{… }
\MoveEqLeft[8]\mathrlap{\int \frac{ 3 \sin x +2 \cos x }{2 \sin x +3 \cos x} \d x = \int \frac{\sqrt{13}\sin(x+A)} {\sqrt{13} \cos(x-A)} \d x =\int \frac{\sin(x-A+2A)} {\cos(x-A)} \d x}\\
& =\int \frac{\sin(x-A) \cos 2A + \sin 2A \cos(x-A)}{\cos(x-A)} \d x \\
& =\cos 2A \int \frac{\sin(x-A)}{\cos(x-A)} \d x+ \sin 2A \int \frac{\cos(x-A)}{\cos(x-A)} \d x\\
& =(\cos^2 A -\sin^2 A ) \int \frac{\sin(x-A)}{\cos(x-A)} \d x+2 \sin A \cos A \int 1 \d x \\
& =\Bigl(\Bigl(\mfrac{3}{\sqrt{13}}\Bigr)^2-\Bigl(\mfrac{2}{\sqrt{13}}\Bigr)^2\Bigr) \int \frac{-du}{u} +2 \mfrac{2}{\sqrt{13}} \mfrac{3}{\sqrt{13}} x +C \\
\intertext{(note: where $ u=\cos(x-A) $ and so $ du =-\sin(x-A) \d x $) }
& =\Bigl(\mfrac{9}{13}-\mfrac{4}{13}\Bigr) (- \ln\abs{u})+\mfrac{12}{13} x+C \\
& =- \mfrac{5}{13} \ln\abs{\cos(x-A)} +\mfrac{12}{13}x+C \\
& =-\mfrac{5}{13} \ln\abs{\cos x \cos A +\sin x \sin A } +\mfrac{12}{13}x+C \\
& =-\mfrac{5}{13} \ln\abs[\Big]{\cos x \mfrac{3}{\sqrt{13}}+ \sin x \mfrac{2}{\sqrt{13}}} +\mfrac{12}{13}x+C \\
& =-\mfrac{5}{13} \ln\abs[\Big]{ \mfrac{1}{\sqrt{13}} (3 \cos x +2 \sin x )} +\mfrac{12}{13}x+C \\
& =-\mfrac{5}{13} \ln\abs[\Big]{\mfrac{1}{\sqrt{13}}} -\mfrac{5}{13} \ln\abs{3 \cos x +2 \sin x } +\mfrac{12}{13}x+C \\
& =-\mfrac{5}{13} \ln\abs{3 \cos x +2 \sin x } +\mfrac{12}{13}x-\mfrac{5}{13} \ln\abs{\mfrac{1}{\sqrt{13}}} +C \\
& =-\mfrac{5}{13} \ln\abs{3 \cos x +2 \sin x } +\mfrac{12}{13}x+K
\end{align*}
\end{document}