答案1
我是 Lucida Bright。我拥有 Type1 和 OpenType 版本,我可以重现排版。
\documentclass{article}
\usepackage{unicode-math}
\setmainfont{Lucida Bright OT}
\setmathfont{Lucida Bright Math OT}
\setlength{\parindent}{1cm}
\addtolength{\textwidth}{1cm}
\begin{document}
{\Large\bfseries 2064.}
\textit{Proposed by Murray S. Klamkin, University of Alberta}
Show that
\[
3\max\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a},\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}
\geq
(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
\]
for arbitrary positive real numbers $a$, $b$, $c$.
\end{document}