我正在尝试让标题和作者姓名出现在文档顶部。但是,预览 PDF 后,只显示文档主体,而标题和作者姓名不出现在页面顶部。以下是我目前所得到的结果:
\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\author{Federico}
\title{Probability Theory}
\begin{document}
We know that if X$\sim$B(n,p), then we have that:
\[\mathbb{P}(X=3)= \binom{n}{3}p^3(1-p)^{n-3}\]
And more generally, we have the following result:
\[\mathbb{P}(X=i)=\binom{n}{i}p^i(1-p)^{n-i}\]
A random variable X is said to be continuous if it is a map $X:S\longrightarrow \mathbb{R}$ equipped with a probability density function $f_X:\mathbb{R}\longrightarrow [0, +\infty)$ so that when $B \subset \mathbb{R}$ we have \[\mathbb{P}(X \subset B)= \int_B f_X (x)dx \]
The expected value of a continuous random variable X is defined as
\[\mathbb{E}[X]=\int_{-\infty} ^\infty x f_X(x) dx\]
\end{document}
答案1
\maketitle
后面添加即可\begin{document}
。
完整代码:
\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\author{Federico}
\title{Probability Theory}
\begin{document}
\maketitle % <==========================================================
We know that if X$\sim$B(n,p), then we have that:
\[\mathbb{P}(X=3)= \binom{n}{3}p^3(1-p)^{n-3}\]
And more generally, we have the following result:
\[\mathbb{P}(X=i)=\binom{n}{i}p^i(1-p)^{n-i}\]
A random variable X is said to be continuous if it is a map $X:S\longrightarrow \mathbb{R}$ equipped with a probability density function $f_X:\mathbb{R}\longrightarrow [0, +\infty)$ so that when $B \subset \mathbb{R}$ we have \[\mathbb{P}(X \subset B)= \int_B f_X (x)dx \]
The expected value of a continuous random variable X is defined as
\[\mathbb{E}[X]=\int_{-\infty} ^\infty x f_X(x) dx\]
\end{document}
结果:
答案2
\documentclass[12pt,a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\begin{document}
\author{Federico}
\title{Probability Theory}
\maketitle
We know that if X$\sim$B(n,p), then we have that:
\[\mathbb{P}(X=3)= \binom{n}{3}p^3(1-p)^{n-3}\]
And more generally, we have the following result:
\[\mathbb{P}(X=i)=\binom{n}{i}p^i(1-p)^{n-i}\]
A random variable X is said to be continuous if it is a map $X:S\longrightarrow \mathbb{R}$ equipped with a probability density function $f_X:\mathbb{R}\longrightarrow [0, +\infty)$ so that when $B \subset \mathbb{R}$ we have \[\mathbb{P}(X \subset B)= \int_B f_X (x)dx \]
The expected value of a continuous random variable X is defined as
\[\mathbb{E}[X]=\int_{-\infty} ^\infty x f_X(x) dx\]
\end{document}