我在我的 latex 文件中使用了以下几行。我获取 latex 的 PDF 文件并检查 PDF eXpress 是否兼容 IEEE 论文提交。有人能告诉我如何消除这个错误吗?我只有在包含图片时才会收到此错误,而没有图片 PDF 文件通过测试。以下是我对 latex 文档使用的格式
\documentclass[conference,compsoc]{IEEEtran}
\makeatletter
\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
{-2.5ex\@plus -1ex \@minus -.25ex}%
{1.25ex \@plus .25ex}%
{\normalfont\normalsize\bfseries}}
\makeatother
\setcounter{secnumdepth}{4} % how many sectioning levels to assign numbers to
\setcounter{tocdepth}{4} % how many sectioning levels to show in ToC
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage[pdftex]{graphicx}
\usepackage{epstopdf}
\begin{document}
\title{Differentially Expressed Gene Detection}
\author{\IEEEauthorblockN{H L }
\IEEEauthorblockA{Department of Computer Science \\
India\\
}
\and
\IEEEauthorblockN{ Wani}
\IEEEauthorblockA{Department of Computer Science \\
India\\
}}
\maketitle
\begin{abstract}
The advancement in high-throughput microarray experiments has paved a way for several transcriptomic studies across the globe by several researchers in the area of functional genomics, molecular genetics, gene discovery, differentially expressed gene detection, diagnosis and prognosis etc.
\end{abstract}
\begin{IEEEkeywords}
Meta-analysis, Gene expression
\end{IEEEkeywords}
\section{Introduction}
Microarray technology have been developed \cite{3,4,7,8,9} to combine the studies that enhance reliability and generalizability of results \cite{6}.
\par
method \cite{3}, S method \cite{7}, A \cite{8}, Minimum p-value \cite{9}, Maximum p-value \cite{10} and Sum of Ranks and Product of Ranks \cite{11},
\section{Related Work}
Over the last decade, many meta-analysis approaches have been reported and implemented in biomedical research \cite{3,4,7,8}.
\section{Structure of ShinyMED}
The general workflow system shown in Figure \ref{Figure 1} visualizes all the steps of meta-analysis, which is carried out automatically once user submits the data and selects the necessary parameters.
\section{Methodology}
Information about datasets,
\subsection{Datasets}
We have considered raw and processed affymetrix datasets
%\begin{figure}
%\begin{center}
%\includegraphics[scale=.80]{Flow1}
% where an .eps filename suffix will be assumed under latex,
% and a .pdf suffix will be assumed for pdflatex; or what has been declared
% via \DeclareGraphicsExtensions.
%\caption{ShinyMDE System Flow}
%\label{Figure 1}
%\end{center}
%\end{figure}
\subsection{Data Preprocessing}
Data preprocessing is done internally by
\subsection{Methods Used}
We briefly describe the methods
\subsubsection{Combine P-Values}
These methods combine probability
\paragraph{Fisher's Method}
AAA method
\paragraph{Stouffer's Method}
S method
\paragraph{Adaptive Weighted (AW) Fisher's Method}
In A
\paragraph{Minimum p-value (minP) method}
approach considers
\paragraph{Maximum p-value (maxP) method}
Under the null hypothesis,
\subsubsection{Combine rank statistics}
Methods in
\paragraph{Product of Ranks (PR) and Sum of Ranks (SR)}
Product
\section{Use of A}
%\begin{figure}[!t]
%\begin{center}
%\includegraphics[width = 8cm, height = 6cm]{shinyuse2}
% where an .eps filename suffix will be assumed under latex,
% and a .pdf suffix will be assumed for pdflatex; or what has been declared
% via \DeclareGraphicsExtensions.
%\caption{Results of meta-analysis by Fisher's method}
%\label{Figure 3}
%\end{center}
%#\end{figure}
\section{Implementation}
running on an Intel core i3-3220 3.30GHz
%\begin{figure}[!t]
%\begin{center}
%\includegraphics[width = 8cm, height = 6cm]{shinyexample}
% where an .eps filename suffix will be assumed under latex,
% and a .pdf suffix will be assumed for pdflatex; or what has been declared
% via \DeclareGraphicsExtensions.
%\caption{ShinyMDE example for meta-analysis}
%\label{Figure 4}
%\end{center}
%\end{figure}
\section{Results and Discussion}
\section{Conclusion}
We present
\begin{thebibliography}{17}
\bibitem{1} T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, R. N. Muertter, M. Holko, O. Ayanbule, A. Yefanov, and A. Soboleva, “NCBI GEO: archive for functional genomics data sets--10 years on,” Nucleic Acids Res., vol. 39, no. Database, pp. D1005–D1010, 2011.
\bibitem{2} H. Parkinson, U. Sarkans, N. Kolesnikov, N. Abeygunawardena, T. Burdett, M. Dylag, I. Emam, A. Farne, E. Hastings, E. Holloway, N. Kurbatova, M. Lukk, J. Malone, R. Mani, E. Pilicheva, G. Rustici, A. Sharma, E. Williams, T. Adamusiak, M. Brandizi, N. Sklyar, and A. Brazma, “ArrayExpress update--an archive of microarray and high-throughput sequencing-based functional genomics experiments,” Nucleic Acids Res., vol. 39, no. Database, pp. D1002–D1004, 2011.
\bibitem{3} R. Fisher, Fisher RA: Statistical methods for research workers. Edinburgh: Genesis Publishing, Oliver and Boyd; 1925.
\bibitem{4} J. K. Choi, U. Yu, S. Kim, and O. J. Yoo,“Combining multiple microarray studies and modeling interstudy variation,” Bioinformatics, vol. 19, no. 1, 2003.
\bibitem{5} D. R. Rhodes, T. R. Barrette, M. a. Rubin, D. Ghosh, and A. M. Chinnaiyan, “Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer,” Cancer Res., vol. 62, no. 15, pp. 4427–4433, 2002.
\bibitem{6} A. Ramasamy, A. Mondry, C. C. Holmes, and D. G. Altman, “Key issues in conducting a meta-analysis of gene expression microarray datasets.,” PLoS Med., vol. 5, no. 9, p. e184, Sep. 2008.
\bibitem{7}Stouffer SA: A study of attitudes. Sci Am 1949, 180(5):11–15.
\bibitem{8} J. Li and G. C. Tseng, “An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies,” Ann. Appl. Stat., vol. 5, no. 2, pp. 994–1019, 2011.
\bibitem{9}Tippett LHC:The Methods of Statistics An Introduction mainly for Workers in the Biological Sciences. London: Williams and Norgate Ltd, 1931.
\bibitem{10}Wilkinson B: A statistical consideration in psychological research. Psychol Bull 1951, 48(3):156–158.
\bibitem{11} Dreyfuss JM, Johnson MD, Park PJ: Meta-analysis of glioblastoma multiforme versus anaplastic astrocytoma identifies robust gene markers. Mol Cancer 2009, 8:71.
\bibitem{12} X. Wang, D. D. Kang, K. Shen, C. Song, S. Lu, L. C. Chang, S. G. Liao, Z. Huo, S. Tang, Y. Ding, N. Kaminski, E. Sibille, Y. Lin, J. Li, and G. C. Tseng, “An r package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection,” Bioinformatics, vol. 28, no. 19, pp. 2534–2536, 2012.
\bibitem{13} E. Hubbell, W. M. Liu, and R. Mei, “Robust estimators for expression analysis,” Bioinformatics, vol. 18, no. 12, pp. 1585–1592, 2002.
\bibitem{14} L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry, “affy--analysis of Affymetrix GeneChip data at the probe level,” Bioinformatics, vol. 20, no. 3, pp. 307–315, 2004.
\bibitem{15} Pan, R. Bourgon, G. Feng, and S. Lin, “Du, P., Kibbe, W.A., Lin and S.M. (2008).‘lumi: a pipeline for processing Illumina microarray.’ Bioinformatics.,” 2015.
\bibitem{16} A. C. J. Miller, “Miller CJ. simpleaffy: Very simple high level analysis of Affymetrix data. R package version 2.44.0, 2015.
\bibitem{17} Benjamini Y, Hochberg Y: Controlling the False Discovery Rate - a Practical and Powerful Approach
to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995,
57(1):289-300.
\end{thebibliography}
\end{document}
我尝试通过 删除书签\usepackage[bookmarks=false]{hyperref}
,但是没有用。