对于以下 .tex,我在\keyword
标签上收到一个错误,在对其进行注释后,我在生成的 pdf 文件中遇到了另一个问题,该文件是文档末尾摘要的复制,如下所示:
这是最小的 .tex 文件:
\documentclass[preprint,12pt]{elsarticle}
\journal{}
\newtheorem{definition}{Definition}
\usepackage{graphicx}
\graphicspath{{./Figures/}}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{bm}
\usepackage{amsfonts}
\usepackage{filecontents}
\usepackage{natbib}
\usepackage{caption}
\usepackage{subcaption}
\providecommand{\keywords}[1]{\textbf{\textit{Index terms---}} #1}
\usepackage{epstopdf}
\epstopdfsetup{outdir=./}
\usepackage{colortbl}
\usepackage[ruled,vlined]{algorithm2e} \providecommand{\SetAlgoLined}{\SetLine}
\providecommand{\DontPrintSemicolon}{\dontprintsemicolon}
\begin{document}
\begin{frontmatter}
\title{}
\tnotetext[label1]{}
\ead{.......}
\author{......}
\ead{......}
\author{.......}
\ead{......}
\author{......}
\address{........}
\ead{......}
\begin{abstract}
%\keywords{blablabla \and bla \and bla \and blablabla \and blablabla}
\end{abstract}
\maketitle
\section{Introduction}
\label{sec:intro}
\section{Background and Related Work}
\label{sec:back}
\subsection{Discussion}
\section{Conclusion}
\label{sec:conc}
% use section* for acknowledgment
\section*{Acknowledgment}
\end{frontmatter}
\end{document}
当我移动评论时,出现以下错误:
! Misplaced \crcr.\endarray ->\crcr\egroup \egroup \gdef \@preamble {}\CT@end ...and graph-based computation \and big data}
答案1
命令\end{frontmatter}
必须在你所拥有的地方\maketitle
;注意,\maketitle
手册中甚至没有提到elsarticle
。
\documentclass[preprint,12pt]{elsarticle}
\journal{Multimedia Tools and Applications}
\newtheorem{definition}{Definition}
\usepackage{graphicx}
\graphicspath{{./Figures/}}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{bm}
\usepackage{amsfonts}
\usepackage{filecontents}
\usepackage{natbib}
\usepackage{caption}
\usepackage{subcaption}
\providecommand{\keywords}[1]{\textbf{\textit{Index terms---}} #1}
\usepackage{epstopdf}
\epstopdfsetup{outdir=./}
\usepackage{colortbl}
\usepackage[ruled,vlined]{algorithm2e} \providecommand{\SetAlgoLined}{\SetLine}
\providecommand{\DontPrintSemicolon}{\dontprintsemicolon}
\begin{document}
\begin{frontmatter}
\title{MedGraph: A Graph-Based Representation and Computation to Handle Large Sets of Images\tnoteref{label1}}
\tnotetext[label1]{}
\ead{.......}
\author{......}
\ead{......}
\author{.......}
\ead{......}
\author{......}
\address{........}
\ead{......}
\begin{abstract}
In order to process and analyze very large volumes of images, efficient representation and structuring techniques are required. Since, current computing machines can provide large memory size, trading off reasonable amount of memory in order to achieve efficient and parallelizable representation of images is preferable. In this paper, we propose a new structure to represent and store images based on in-memory graph concept.
%\keywords{Image processing \and region of interest (ROI) \and medical images \and graph-based computation \and big data}
\end{abstract}
\end{frontmatter}
\section{Introduction}
\label{sec:intro}
\section{Background and Related Work}
\label{sec:back}
\subsection{Big data and graph-based systems}
\subsection{Image representation}
\subsection{Discussion}
Although MedGraph provides novelty in image representations as grid graphs, there are some limitations for image processing algorithms that apply a divide-and-conquer approach or benefit from spatial locality. To see this, consider the following examples. The first example is when there is a need to jump directly to a pixel in the middle of an image as it might be the case with divide-and-conquer algorithms.
\section{Conclusion}
\label{sec:conc}
The volume of medical images grows rapidly and new techniques are needed to achieve efficient management and manipulation.
% use section* for acknowledgment
\section*{Acknowledgment}
\end{document}