我正在编写一个包含两个方程数组的长列表的文档。目前,这些数组看起来非常繁琐和拥挤,我不确定什么才是让它看起来更整洁的最佳方法,而不必将它们分成几部分。
这是我的代码:
\documentclass[12pt,twoside]{article}
\usepackage{amsmath}
\usepackage[makeroom]{cancel}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{soul}
\usepackage{calc}
\begin{document}
\begin{eqnarray*}
& & \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} \cdot (v - b - \epsilon (b - \rho )) - G(v) \cdot (1 + \epsilon ) = 0. \\
& \Longrightarrow & \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - \beta(v) - \epsilon (\beta(v) - \rho )) - G(v)(1 + \epsilon ) = 0, \\
& \Longrightarrow & \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - \beta(v) - \epsilon (\beta(v) - \rho )) = G(v)(1 + \epsilon ), \\
& \Longrightarrow & g(v) (v - \beta(v) - \epsilon (\beta(v) - \rho )) = G(v) \cdot \beta^{'}(v) (1 + \epsilon ), \\
& \Longrightarrow & g(v) v - g(v) \beta(v) - g(v) \epsilon (\beta(v) - \rho ) = G(v) \beta^{'}(v) (1 + \epsilon ), \\
& \Longrightarrow & g(v) v - g(v) \beta(v)(1 + \epsilon ) + g(v) \epsilon \rho = G(v) \beta^{'}(v) \cdot (1 + \epsilon ), \\
& \Longrightarrow & g(v)v + g(v) \epsilon \rho = G(v) \beta^{'}(v) \cdot (1 + \epsilon ) + g(v) \beta(v)(1 + \epsilon ), \\
& \Longrightarrow & [ G(v) \beta^{'}(v) + g(v) \beta(v) ] (1 + \epsilon ) = g(v)\cdot v + g(v) \epsilon \rho, \\
& \Longrightarrow & \frac{d}{dv}[G(v) \beta(v)] = \frac{1}{1 + \epsilon} \Big [ g(v) v + g(v) \epsilon \rho \Big ], \\
& \Longrightarrow & \int_{\bar{v}(r)}^{v} \frac{d}{dw}[G(w) \beta(w)] = \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Big [ g(w)w + g(w)\cdot \epsilon \rho \Big ], \\
& \Longrightarrow & G(v) \beta(v) = \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Big [ g(w) (w + \epsilon \cdot \rho ) \Big ], \\
\end{eqnarray*}
Integrating by parts, we have:
\begin{eqnarray*}
\beta(v) & = & \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Bigg [ \frac{g(w)w}{G(v)} + \frac{g(w) \epsilon \rho}{G(v)} \Bigg ], \\
& = & \frac{1}{1 + \epsilon} \Bigg [ \int_{\bar{v}(r)}^{v} \frac{g(w)w}{G(v)} + \int_{\bar{v}(r)}^{v} \frac{g(w)\epsilon \rho}{G(v)} \Bigg ], \\
& = & \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Bigg [ \frac{g(w)w}{G(v)} + \frac{g(w) \epsilon \rho}{G(v)} \Bigg ], \\
& = & \frac{1}{1 + \epsilon} \Bigg [ \frac{G(w)w}{G(v)} \Bigg |_{\bar{v}(r)}^{v} - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} + \epsilon \rho \Bigg ( \frac{G(w)}{G(v)} \Bigg |_{\bar{v}(r)}^{v} \Bigg ) \Bigg ], \\
& = & \frac{1}{1 + \epsilon} \Bigg [ \frac{1}{G(v)} \Bigg ( G(w)w \Bigg |_{\bar{v}(r)}^{v} + \epsilon \rho G(w) \Bigg |_{\bar{v}(r)}^{v} \Bigg ) - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ], \\
& = & \frac{1}{1 + \epsilon} \Bigg [ \frac{1}{G(v)} \Bigg ( G(v)v - \cancel{G(\bar{v}(r))} \bar{v}(r) + \epsilon \rho (G(v) - \cancel{G(\bar{v}(r)}) \Bigg ) - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ], \\
& = & \frac{1}{1 + \epsilon} \Bigg [ \frac{1}{\cancel{G(v)}} \Bigg ( \cancel{G(v)}v + \epsilon \rho \cancel{G(v)} \Bigg ) - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ] \\
& = & \frac{1}{1 + \epsilon} \Bigg [ v + \epsilon \rho - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ], \\
\end{eqnarray*}
\end{document}
您可以在下面看到方程式的第一部分:
答案1
我认为如果你用文字来解释必要的步骤,你可以展示更少的方程式。第一次积分的步骤可以如下呈现。
\documentclass[12pt,twoside]{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
We start from the fact that
\begin{equation*}
\frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - b - \epsilon (b - \rho )) - G(v) (1 + \epsilon ) = 0.
\end{equation*}
Since $b=\beta(v)$, a straightforward rearrangement shows that
\begin{equation*}
G(v) \beta'(v) + g(v) \beta(v) = g(v) \, \frac{v + \epsilon \rho}{1 + \epsilon}.
\end{equation*}
The left-hand side is now the derivative of a product, so that integrating yields
\begin{equation*}
G(v)\beta(v) = \int g(v) \, \frac{v + \epsilon \rho}{1 + \epsilon} \, \mathrm{d} v
\end{equation*}
\end{document}
答案2
我不确定这是否看起来更好,但这里有一个使用 align* 的版本。
\documentclass[12pt,twoside]{article}
\usepackage{amsmath}
\usepackage[makeroom]{cancel}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{soul}
\usepackage{calc}
\usepackage{showframe}
\begin{document}
\begin{align*}
&\frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} \cdot (v - b - \epsilon (b - \rho )) - G(v) \cdot (1 + \epsilon ) = 0. \\
&\Longrightarrow\quad \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - \beta(v) - \epsilon (\beta(v) - \rho )) - G(v)(1 + \epsilon ) = 0, \\
&\Longrightarrow\quad \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - \beta(v) - \epsilon (\beta(v) - \rho )) = G(v)(1 + \epsilon ), \\
&\Longrightarrow\quad g(v) (v - \beta(v) - \epsilon (\beta(v) - \rho )) = G(v) \cdot \beta^{'}(v) (1 + \epsilon ), \\
&\Longrightarrow\quad g(v) v - g(v) \beta(v) - g(v) \epsilon (\beta(v) - \rho ) = G(v) \beta^{'}(v) (1 + \epsilon ), \\
&\Longrightarrow\quad g(v) v - g(v) \beta(v)(1 + \epsilon ) + g(v) \epsilon \rho = G(v) \beta^{'}(v) \cdot (1 + \epsilon ), \\
&\Longrightarrow\quad g(v)v + g(v) \epsilon \rho = G(v) \beta^{'}(v) \cdot (1 + \epsilon ) + g(v) \beta(v)(1 + \epsilon ), \\
&\Longrightarrow\quad [ G(v) \beta^{'}(v) + g(v) \beta(v) ] (1 + \epsilon ) = g(v)\cdot v + g(v) \epsilon \rho, \\
&\Longrightarrow\quad \frac{d}{dv}[G(v) \beta(v)] = \frac{1}{1 + \epsilon} \Big [ g(v) v + g(v) \epsilon \rho \Big ], \\
&\Longrightarrow\quad \int_{\bar{v}(r)}^{v} \frac{d}{dw}[G(w) \beta(w)] = \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v}
\Big [ g(w)w + g(w)\cdot \epsilon \rho \Big ], \\
&\Longrightarrow\quad G(v) \beta(v) = \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Big [ g(w) (w + \epsilon \cdot \rho ) \Big ],
\end{align*}
By integrating by parts we have
\begin{align*}
\beta(v) &= \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Bigg [ \frac{g(w)w}{G(v)} + \frac{g(w) \epsilon \rho}{G(v)} \Bigg ], \\
&= \frac{1}{1 + \epsilon} \Bigg [ \int_{\bar{v}(r)}^{v} \frac{g(w)w}{G(v)} + \int_{\bar{v}(r)}^{v} \frac{g(w)\epsilon \rho}{G(v)} \Bigg ], \\
&= \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Bigg [ \frac{g(w)w}{G(v)} + \frac{g(w) \epsilon \rho}{G(v)} \Bigg ], \\
&= \frac{1}{1 + \epsilon} \Bigg [ \frac{G(w)w}{G(v)} \Bigg |_{\bar{v}(r)}^{v} - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} + \epsilon \rho \Bigg ( \frac{G(w)}{G(v)} \Bigg |_{\bar{v}(r)}^{v} \Bigg ) \Bigg ], \\
&= \frac{1}{1 + \epsilon} \Bigg [ \frac{1}{G(v)} \Bigg ( G(w)w \Bigg |_{\bar{v}(r)}^{v} + \epsilon \rho G(w) \Bigg |_{\bar{v}(r)}^{v} \Bigg ) - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ], \\
&= \frac{1}{1 + \epsilon} \Bigg [ \frac{1}{G(v)} \Bigg (G(v)v - \cancel{G(\bar{v}(r))} \bar{v}(r) + \epsilon \rho (G(v) - \cancel{G(\bar{v}(r)}) \Bigg ) \\
&\phantom{\quad = \frac{1}{1 + \epsilon}} - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ], \\
&= \frac{1}{1 + \epsilon} \Bigg [ \frac{1}{\cancel{G(v)}} \Bigg ( \cancel{G(v)}v + \epsilon \rho \cancel{G(v)} \Bigg ) - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ] \\
&= \frac{1}{1 + \epsilon} \Bigg [ v + \epsilon \rho - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Bigg ],
\end{align*}
\end{document}
答案3
这是使用 AMSalign*
环境对 John Kormylo 的解决方案的略微变化。align*
环境以“成对”的方式组织对齐,因此我用\Longrightarrow
a 将 和方程分开&&
,然后在等号周围进行第二次对齐。对于第一组方程,这会产生(我认为第二组方程与 John 的方程非常相似):
\Bigg ....\Bigg
我还用更正确的s替换了您的 ,并将第二个方程中的\Biggl ... \Biggr
降级为,因为我认为这看起来更好。\Bigg(...\Bigg)
\bigg(...\bigg)
代码如下:
\documentclass[12pt,twoside]{article}
\usepackage{amsmath}
\usepackage[makeroom]{cancel}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{graphicx}
\usepackage{soul}
\usepackage{calc}
\begin{document}
\begin{align*}
&&\frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} \cdot (v - b - \epsilon (b - \rho )) - G(v) \cdot (1 + \epsilon ) &= 0. \\
\Longrightarrow && \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - \beta(v) - \epsilon (\beta(v) - \rho )) - G(v)(1 + \epsilon ) &= 0, \\
\Longrightarrow && \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - \beta(v) - \epsilon (\beta(v) - \rho )) &= G(v)(1 + \epsilon ), \\
\Longrightarrow && g(v) (v - \beta(v) - \epsilon (\beta(v) - \rho )) &= G(v) \cdot \beta^{'}(v) (1 + \epsilon ), \\
\Longrightarrow && g(v) v - g(v) \beta(v) - g(v) \epsilon (\beta(v) - \rho ) &= G(v) \beta^{'}(v) (1 + \epsilon ), \\
\Longrightarrow && g(v) v - g(v) \beta(v)(1 + \epsilon ) + g(v) \epsilon \rho &= G(v) \beta^{'}(v) \cdot (1 + \epsilon ), \\
\Longrightarrow && g(v)v + g(v) \epsilon \rho &= G(v) \beta^{'}(v) \cdot (1 + \epsilon ) + g(v) \beta(v)(1 + \epsilon ), \\
\Longrightarrow && [ G(v) \beta^{'}(v) + g(v) \beta(v) ] (1 + \epsilon ) &= g(v)\cdot v + g(v) \epsilon \rho, \\
\Longrightarrow && \frac{d}{dv}[G(v) \beta(v)] &= \frac{1}{1 + \epsilon} \Bigl[ g(v) v + g(v) \epsilon \rho \Bigr], \\
\Longrightarrow && \int_{\bar{v}(r)}^{v} \frac{d}{dw}[G(w) \beta(w)] &= \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Bigl[ g(w)w + g(w)\cdot \epsilon \rho \Bigr], \\
\Longrightarrow && G(v) \beta(v) &= \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Bigl[ g(w) (w + \epsilon \cdot \rho ) \Bigr], \\
\end{align*}
Integrating by parts, we have:
\begin{align*}
\beta(v) & = \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Biggl[ \frac{g(w)w}{G(v)} + \frac{g(w) \epsilon \rho}{G(v)} \Biggr], \\
& = \frac{1}{1 + \epsilon} \Biggl[ \int_{\bar{v}(r)}^{v} \frac{g(w)w}{G(v)} + \int_{\bar{v}(r)}^{v} \frac{g(w)\epsilon \rho}{G(v)} \Biggr], \\
& = \frac{1}{1 + \epsilon} \int_{\bar{v}(r)}^{v} \Biggl[ \frac{g(w)w}{G(v)} + \frac{g(w) \epsilon \rho}{G(v)} \Biggr], \\
& = \frac{1}{1 + \epsilon} \Biggl[ \frac{G(w)w}{G(v)} \Bigg |_{\bar{v}(r)}^{v} - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} + \epsilon \rho \biggl( \frac{G(w)}{G(v)} \Bigg |_{\bar{v}(r)}^{v} \biggr)\Biggr], \\
& = \frac{1}{1 + \epsilon} \Biggl[ \frac{1}{G(v)} \biggl( G(w)w \Bigg |_{\bar{v}(r)}^{v} + \epsilon \rho G(w) \Bigg |_{\bar{v}(r)}^{v} \biggr)- \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Biggr], \\
& = \frac{1}{1 + \epsilon} \Biggl[ \frac{1}{G(v)} \biggl( G(v)v - \cancel{G(\bar{v}(r))} \bar{v}(r) + \epsilon \rho (G(v) - \cancel{G(\bar{v}(r)}) \biggr)- \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Biggr], \\
& = \frac{1}{1 + \epsilon} \Biggl[ \frac{1}{\cancel{G(v)}} \biggl( \cancel{G(v)}v + \epsilon \rho \cancel{G(v)} \biggr)- \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Biggr] \\
& = \frac{1}{1 + \epsilon} \Biggl[ v + \epsilon \rho - \int_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \Biggr], \\
\end{align*}
\end{document}
答案4
我建议array
在第一个系列和align*
第二个系列中使用。我更改了分隔符的大小:大多数分隔符都太大了,至少对我来说是这样的:
\documentclass[a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage[showframe]{geometry}
\usepackage{mathtools, cancel, array, amssymb}
\begin{document}
\[\renewcommand\arraystretch{1.5} \begin{array}{c@{\implies{}} > {\displaystyle}l}
\multicolumn{2}{l}{ \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} · (v - b - ϵ(b - ρ)) - G(v) · (1 + ϵ) = 0. } \\
\makebox[2em]{} & \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - β(v) - ϵ(β(v) - ρ)) - G(v)(1 + ϵ) = 0, \\
& \frac{ \displaystyle g(v)}{\displaystyle \beta^{'}(v)} (v - β(v) - ϵ(β(v) - ρ)) = G(v)(1 + ϵ), \\
& g(v) (v - β(v) - ϵ(β(v) - ρ)) = G(v) · \beta^{'}(v) (1 + ϵ), \\
& g(v) v - g(v) β(v) - g(v) ϵ(β(v) - ρ) = G(v) \beta^{'}(v) (1 + ϵ), \\
& g(v) v - g(v) β(v)(1 + ϵ) + g(v) ϵρ= G(v) \beta^{'}(v) · (1 + ϵ), \\
& g(v)v + g(v) ϵρ= G(v) \beta^{'}(v) · (1 + ϵ) + g(v) β(v)(1 + ϵ), \\
& [ G(v) \beta^{'}(v) + g(v) β(v) ] (1 + ϵ) = g(v) · v + g(v) ϵ\rho, \\[0.5ex]
& \frac{d}{dv}[G(v) β(v)] = \frac{1}{1 + ϵ} \Big [ g(v) v + g(v) ϵρ\Big ], \\[2ex]
& ∫_{\bar{v}(r)}^{v} \frac{d}{dw}[G(w) β(w)] = \frac{1}{1 + ϵ} ∫_{\bar{v}(r)}^{v} \Big [ g(w)w + g(w) · ϵρ\Big ], \\[2ex]
& G(v) β(v) = \frac{1}{1 + ϵ} ∫_{\bar{v}(r)}^{v} \Big [ g(w) (w + ϵ · ρ) \Big ],
\end{array} \]
Integrating by parts, we have
\begin{align*}
β(v) & = \frac{1}{1 + ϵ} ∫_{\bar{v}(r)}^{v} \biggl[ \frac{g(w)w}{G(v)} + \frac{g(w) ϵρ}{G(v)} \biggr]
= \frac{1}{1 + ϵ} \biggl[ ∫_{\bar{v}(r)}^{v} \frac{g(w)w}{G(v)} + ∫_{\bar{v}(r)}^{v} \frac{g(w)ϵρ}{G(v)} \biggr ], \\
& = \frac{1}{1 + ϵ} ∫_{\bar{v}(r)}^{v} \biggl [ \frac{g(w)w}{G(v)} + \frac{g(w) ϵρ}{G(v)} \biggr], \\
& = \frac{1}{1 + ϵ} \biggl[ \frac{G(w)w}{G(v)} \biggr\rvert_{\bar{v}(r)}^{v} - ∫_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} + ϵρ\biggr( \frac{G(w)}{G(v)} \biggr\rvert_{\bar{v}(r)}^{v} \biggr ) \biggr ], \\
& = \frac{1}{1 + ϵ} \biggl [ \frac{1}{G(v)} \biggl ( G(w)w \biggr \rvert_{\bar{v}(r)}^{v} + ϵρG(w) \biggr \rvert_{\bar{v}(r)}^{v} \biggr ) - ∫_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \biggr ], \\
& = \frac{1}{1 + ϵ} \biggl [ \frac{1}{G(v)} \Bigl ( G(v)v - \cancel{G(\bar{v}(r))} \bar{v}(r) + ϵρ(G(v) - \cancel{G(\bar{v}(r)}) \Bigr ) - ∫_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \biggr ], \\
& = \frac{1}{1 + ϵ} \biggl [ \frac{1}{\cancel{G(v)}} \Bigl ( \cancel{G(v)}v + ϵρ\cancel{G(v)} \Bigr ) - ∫_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \biggr ] \\
& = \frac{1}{1 + ϵ} \biggl [ v + ϵρ- ∫_{\bar{v}(r)}^{v} \frac{G(w)}{G(v)} \biggr ], \\
\end{align*}
\end{document}