LaTeX \begin{align} 两次对齐

LaTeX \begin{align} 两次对齐

我有一个带有方程式的代码:

\begin{align*}
&min(\norm{[\hat{w}(k)-\hat{y}(k)-&M^P \Delta \hat{u}^P (k)]-M \Delta \hat{u}(k)}_\psi^2 +\norm{\Delta \hat{u}(k)}_\Lambda^2)\\
&\text{\textit{za podmínek}} &-\Delta U_{max} \leq \Delta\hat{u}(k) \leq \Delta U_{max}\\
&&U_{min}\leq U(k-1)+J \Delta \hat{u}(k)\leq U_{max}\\
&&Y_{min} \leq \hat{y}^0 (k)+M\Delta \hat{u}(k) \leq Y_{max}
\end{align*}

输出为

对齐错误

但我需要以下输出:在此处输入图片描述

第一条蓝线先对齐,第二条蓝线后对齐。两条都左对齐。我该如何实现?谢谢帮助。

答案1

您可以使用环境来实现这一点alignat*。以下是两种布局:

\documentclass[a4paper, 11pt]{book}
\usepackage[utf8]{inputenc}
\usepackage{fourier, erewhon}
\usepackage{mathtools}
\DeclarePairedDelimiter\norm\lVert\rVert

\begin{document}

\begin{alignat*}{2}
    & \min\bigl(\norm{[\hat{w}(k)-\hat{y}(k)-{} & & M^P Δ\hat{u}^P (k)]-M Δ\hat{u}(k)}_\psi² +\norm{Δ\hat{u}(k)}_\Lambda²\bigr) \\
    & \textit{za podmínek} & &\mathllap{-}ΔU_{\max} \leq Δ\hat{u}(k) \leq ΔU_{\max} \\
    & & & U_{\min}\leq U(k-1)+J Δ\hat{u}(k)\leq U_{\max} \\
    & & & Y_{\min} \leq \hat{y}⁰ (k)+MΔ\hat{u}(k) \leq Y_{\max}
\end{alignat*}
\begin{alignat*}{2}
    & \min\bigl(\norm{[\hat{w}(k)-\hat{y}(k)& &-M^P Δ\hat{u}^P (k)]-M Δ\hat{u}(k)}_\psi² +\norm{Δ\hat{u}(k)}_\Lambda²\bigr) \\
    & \textit{za podmínek} & & \begin{array}[t]{|@{\quad}l}
    \mathllap{-}ΔU_{\max} \leq Δ\hat{u}(k) \leq ΔU_{\max} \\
    U_{\min}\leq U(k-1)+J Δ\hat{u}(k)\leq U_{\max} \\
     Y_{\min} \leq \hat{y}⁰ (k)+MΔ\hat{u}(k) \leq Y_{\max}
    \end{array}
\end{alignat*}

\end{document} 

在此处输入图片描述

答案2

一个替代array方案:

\documentclass[tikz,varwidth,border=3mm]{standalone}
\usepackage{mathtools}
\DeclarePairedDelimiter\norm\lVert\rVert

    \begin{document}
\[\renewcommand\arraycolsep{1pt}
    \begin{array}{lcl}
min(\norm{[\hat{w}(k)-\hat{y}(k)
    & - & M^P \Delta \hat{u}^P (k)] - M 
            \Delta\hat{u}(k)}_\psi^2 + 
            \norm{\Delta \hat{u}(k)}_\Lambda^2)                 \\
\text{\textit{za podmínek}} 
    & - & \Delta U_{max} \leq \Delta\hat{u}(k)\leq \Delta U_{max}  \\
    &   & U_{min}\leq U(k-1)+J \Delta \hat{u}(k)\leq U_{max}        \\
    &   & Y_{min} \leq \hat{y}^0 (k)+M\Delta \hat{u}(k) \leq Y_{max}
\end{array}\]
    \end{document}

在此处输入图片描述

相关内容