我现在正在用 tikzposter 写海报,但遇到了 LaTex 问题。有时它会忽略错误(我不明白它们是如何产生的)并进行编译,但现在它只是拒绝编译。
显示的常见错误是,我在使用(嵌套)数学环境的框中不接受结束的“}”。
非常感谢您的宝贵时间。
\documentclass[24pt, a0paper, landscape]{tikzposter}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{amsthm}
\newtheorem{definition}{Definition}
\begin{document}
\begin{columns}
\column{.33}
\block{Measure Theory}{
\begin{definition}
(p.15 3.1, Schilling). A $\sigma$-algebra $\mathscr{A}$ on a set X is a family of subsets of X with the following properties:
\begin{tabbing}
\=Nationality: \=Mathematician \= dissambeletheroadissupposedtobeverylong \= this \kill
\> ($\Sigma_{1}$) \> $X \in \mathscr{A}$, \\
\> ($\Sigma_{2}$) \> $A \in \mathscr{A} \Rightarrow A^{c} \in \mathscr{A}$, \\
\> ($\Sigma_{3}$) \> $ \left( A_{j} \right)_{j \in \mathbb{N}} \subset \mathscr{A} \Rightarrow \bigcup_{j \in \mathbb{N}} A_{j} \in \mathscr{A}$. \\
\end{tabbing}
A set $A \in \mathscr{A}$ is said to be ($\mathscr{A}$) - measurable.
\end{definition}
\begin{definition}
(p.78, Schilling). $\int u \cdot d\lambda^{n}$ is called the n-dimensional Lebesgue integral and for $u \in \mathscr{L}^{1}_{\bar{\mathbb{R}}} (\lambda^{n})$, we say that u is Lebesgue integrable.
\end{definition}
}
\end{columns}
\end{document}
答案1
答案是手动用文件本身的手动环境替换前面更优雅的定理定义,从而避免使用“newtheorem”命令。这不是最优雅的解决方案,但对于海报来说已经足够了。
\documentclass[24pt, a0paper, landscape]{tikzposter}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{mathrsfs}
\usepackage{amsthm}
\begin{document}
\begin{columns}
\column{.33}
\block{Measure Theory}{
\textbf{Definition}
\textit{
(p.15 3.1, Schilling). A $\sigma$-algebra $\mathscr{A}$ on a set X is a family of subsets of X with the following properties:
\begin{tabbing}
\=Nationality: \=Mathematician \= dissambeletheroadissupposedtobeverylong \= this \kill
\> ($\Sigma_{1}$) \> $X \in \mathscr{A}$, \\
\> ($\Sigma_{2}$) \> $A \in \mathscr{A} \Rightarrow A^{c} \in \mathscr{A}$, \\
\> ($\Sigma_{3}$) \> $ \left( A_{j} \right)_{j \in \mathbb{N}} \subset \mathscr{A} \Rightarrow \bigcup_{j \in \mathbb{N}} A_{j} \in \mathscr{A}$. \\
\end{tabbing}
A set $A \in \mathscr{A}$ is said to be ($\mathscr{A}$) - measurable.}
\textbf{Definition}
\textit{
(p.78, Schilling). $\int u \cdot d\lambda^{n}$ is called the n-dimensional Lebesgue integral and for $u \in \mathscr{L}^{1}_{\bar{\mathbb{R}}} (\lambda^{n})$, we say that u is Lebesgue integrable.}
}
\end{columns}
\end{document}