\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{IEEEtrantools}
\begin{document}
\vspace{-1em}
\begin{flalign*}
\times a^{m}\times a^{n-m}&=\times a^{n};\,\text{(By case already proved)}&\\
\times a^{m}\times a^{n-m}\div a^{n-m}&=\times a^{n}\div a^{n-m};\,\text{(Axiom)}&\\
\times a^{m}&=\times a^{n}\div a^{n-m};\,\text{(Definition of division)}&\\
\times a^{m}\div a^{n}&=\times a^{n}\div a^{n-m}\div a^{n};\,\text{(Axiom)}&\\
\times a^{m}\div a^{n}&=\times a^{n}\div a^{n}\div a^{n-m};
\intertext{(The law of commutation for multiplication and division)}
\end{flalign*}
\end{document}
答案1
使其成为方程组的一部分,并<len>
在中使用负垂直跳跃\\[<len>]
:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{flalign*}
\times a^{m}\times a^{n-m} &= \times a^{n}; && \text{(By case already proved)} \\
\times a^{m}\times a^{n-m}\div a^{n-m} &= \times a^{n}\div a^{n-m}; && \text{(Axiom)} \\
\times a^{m} &= \times a^{n}\div a^{n-m}; && \text{(Definition of division)} \\
\times a^{m}\div a^{n} &= \times a^{n}\div a^{n-m}\div a^{n}; && \text{(Axiom)} \\
\times a^{m}\div a^{n} &= \times a^{n}\div a^{n}\div a^{n-m}; \\[-\belowdisplayskip]
\intertext{(The law of commutation for multiplication and division)}
\end{flalign*}
\end{document}
等式中最后一个注释的上方向上移动了-\belowdisplayskip
。您可以根据需要进行调整。
答案2
由于您加载,因此mathtools
您可以简单地使用\shortintertext
而不是\intertext
。我添加了一个建议来改进方程式的布局(至少对我来说是这样),定义一个commenteq
命令:
\documentclass[11pt,a4paper]{article}
\usepackage{blindtext}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{IEEEtrantools}
\newcommand\commenteq[1]{\text{\footnotesize(#1)}}
\begin{document}
\vspace{-1em}
\begin{flalign*}
× a^{m} × a^{n-m}&= × aⁿ;\,\text{(By case already proved)}&\\
× a^{m} × a^{n-m}\div a^{n-m}&= × aⁿ\div a^{n-m};\,\text{(Axiom)}&\\
× a^{m}&= × aⁿ\div a^{n-m};\,\text{(Definition of division)}&\\
× a^{m}\div aⁿ&= × aⁿ\div a^{n-m}\div aⁿ;\,\text{(Axiom)}&\\
× a^{m}\div aⁿ&= × aⁿ\div aⁿ\div a^{n-m};
\shortintertext{(The law of commutation for multiplication and division)}
\end{flalign*}
\begin{flalign*}
{} × a^{m} × a^{n-m}&= × aⁿ; && \commenteq{By case already proved}\\
{} × a^{m} × a^{n-m}\div a^{n-m}&= × aⁿ\div a^{n-m}; && \commenteq{Axiom}\\
{} × a^{m}&= × aⁿ\div a^{n-m}; & &\commenteq{Definition of division}\\
{} × a^{m}\div aⁿ&= × aⁿ\div a^{n-m}\div aⁿ; && \commenteq{Axiom}\\
{} × a^{m}\div aⁿ&= × aⁿ\div aⁿ\div a^{n-m};
\shortintertext{(The law of commutation for multiplication and division)}
\end{flalign*}
\end{document}