我已经列举
\documentclass[12pt,a4paper]{article}
\usepackage{fouriernc}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{enumerate}
\usepackage[left=2cm,right=2cm,top=2cm,bottom=2cm]{geometry}
\begin{document}
\begin{enumerate}[\quad 1)]
\item $y = (x-5)\cdot \sqrt{x^2+7 x+10}$, \quad $y'=\dfrac{4 x^2+11 x-15}{2 \sqrt{x^2+7 x+10}}$. \hfill Answer. $x=1.$ \item $y = (x-4)\cdot \sqrt{x^2+6 x+5}$, \quad $y'=\dfrac{2 x^2+5 x-7}{\sqrt{x^2+6 x+5}}$. \hfill Answer. $x=1.$ \item $y = (x-1)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{2 x^2-25 x+68}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=4.$ \item $y = (x+1)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{2 x^2-17 x+26}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (x+1)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{4 x^2-43 x+93}{2 \sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (x+2)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{2 x^2-13 x+11}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=1.$ \item $y = (x+2)\cdot \sqrt{x^2-13 x+40}$, \quad $y'=\dfrac{4 x^2-35 x+54}{2 \sqrt{x^2-13 x+40}}$. \hfill Answer. $x=2.$ \item $y = (x+3)\cdot \sqrt{x^2-8 x+12}$, \quad $y'=\dfrac{x (2 x-9)}{\sqrt{x^2-8 x+12}}$. \hfill Answer. $x=0.$ \item $y = (x+3)\cdot \sqrt{x^2-11 x+28}$, \quad $y'=\dfrac{4 x^2-27 x+23}{2 \sqrt{x^2-11 x+28}}$. \hfill Answer. $x=1.$ \item $y = (x+4)\cdot \sqrt{x^2-6 x+5}$, \quad $y'=\dfrac{2 x^2-5 x-7}{\sqrt{x^2-6 x+5}}$. \hfill Answer. $x=-1.$ \item $y = (x+4)\cdot \sqrt{x^2-9 x+18}$, \quad $y'=\dfrac{x (4 x-19)}{2 \sqrt{x^2-9 x+18}}$. \hfill Answer. $x=0.$ \item $y = (x+5)\cdot \sqrt{x^2-7 x+10}$, \quad $y'=\dfrac{4 x^2-11 x-15}{2 \sqrt{x^2-7 x+10}}$. \hfill Answer. $x=-1.$ \item $y = (x+6)\cdot \sqrt{x^2-2 x-3}$, \quad $y'=\dfrac{2 x^2+3 x-9}{\sqrt{x^2-2 x-3}}$. \hfill Answer. $x=-3.$ \item $y = (x+6)\cdot \sqrt{x^2-5 x+4}$, \quad $y'=\dfrac{4 x^2-3 x-22}{2 \sqrt{x^2-5 x+4}}$. \hfill Answer. $x=-2.$ \item $y = (x+7)\cdot \sqrt{x^2-4}$, \quad $y'=\dfrac{2 x^2+7 x-4}{\sqrt{x^2-4}}$. \hfill Answer. $x=-4.$ \item $y = (x+8)\cdot \sqrt{x^2+2 x-3}$, \quad $y'=\dfrac{2 x^2+11 x+5}{\sqrt{x^2+2 x-3}}$. \hfill Answer. $x=-5.$ \item $y = (x+8)\cdot \sqrt{x^2-x-2}$, \quad $y'=\dfrac{4 x^2+13 x-12}{2 \sqrt{x^2-x-2}}$. \hfill Answer. $x=-4.$ \item $y = (x+8)\cdot \sqrt{x^2-12 x+20}$, \quad $y'=\dfrac{2 \left(x^2-5 x-14\right)}{\sqrt{x^2-12 x+20}}$. \hfill Answer. $x=-2.$ \item $y = (x+9)\cdot \sqrt{x^2+x-2}$, \quad $y'=\dfrac{4 x^2+21 x+5}{2 \sqrt{x^2+x-2}}$. \hfill Answer. $x=-5.$ \item $y = (x+9)\cdot \sqrt{x^2-10 x+9}$, \quad $y'=\dfrac{2 \left(x^2-3 x-18\right)}{\sqrt{x^2-10 x+9}}$. \hfill Answer. $x=-3.$ \item $y = (x+10)\cdot \sqrt{x^2+6 x+5}$, \quad $y'=\dfrac{2 x^2+19 x+35}{\sqrt{x^2+6 x+5}}$. \hfill Answer. $x=-7.$ \item $y = (x+10)\cdot \sqrt{x^2-8 x-20}$, \quad $y'=\dfrac{2 \left(x^2-x-30\right)}{\sqrt{x^2-8 x-20}}$. \hfill Answer. $x=-5.$ \item $y = (x+10)\cdot \sqrt{x^2-14 x+40}$, \quad $y'=\dfrac{2 x^2-11 x-30}{\sqrt{x^2-14 x+40}}$. \hfill Answer. $x=-2.$ \item $y = (2 x-5)\cdot \sqrt{x^2-12 x+35}$, \quad $y'=\dfrac{4 x^2-41 x+100}{\sqrt{x^2-12 x+35}}$. \hfill Answer. $x=4.$ \item $y = (2 x-3)\cdot \sqrt{x^2+4 x+3}$, \quad $y'=\dfrac{x (4 x+9)}{\sqrt{x^2+4 x+3}}$. \hfill Answer. $x=0.$ \item $y = (2 x-3)\cdot \sqrt{x^2-10 x+24}$, \quad $y'=\dfrac{4 x^2-33 x+63}{\sqrt{x^2-10 x+24}}$. \hfill Answer. $x=3.$ \item $y = (2 x-2)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{2 \left(2 x^2-25 x+68\right)}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=4.$ \item $y = (2 x-1)\cdot \sqrt{x^2+6 x+8}$, \quad $y'=\dfrac{4 x^2+17 x+13}{\sqrt{x^2+6 x+8}}$. \hfill Answer. $x=-1.$ \item $y = (2 x-1)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{4 x^2-25 x+34}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=2.$ \item $y = (2 x+1)\cdot \sqrt{x^2+8 x+15}$, \quad $y'=\dfrac{4 x^2+25 x+34}{\sqrt{x^2+8 x+15}}$. \hfill Answer. $x=-2.$ \item $y = (2 x+1)\cdot \sqrt{x^2-6 x+8}$, \quad $y'=\dfrac{4 x^2-17 x+13}{\sqrt{x^2-6 x+8}}$. \hfill Answer. $x=1.$ \item $y = (2 x+2)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{4 x^2-34 x+52}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (2 x+2)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{4 x^2-43 x+93}{\sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (2 x+3)\cdot \sqrt{x^2-4 x+3}$, \quad $y'=\dfrac{x (4 x-9)}{\sqrt{x^2-4 x+3}}$. \hfill Answer. $x=0.$ \item $y = (2 x+4)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{4 x^2-26 x+22}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=1.$ \item $y = (2 x+4)\cdot \sqrt{x^2-13 x+40}$, \quad $y'=\dfrac{4 x^2-35 x+54}{\sqrt{x^2-13 x+40}}$. \hfill Answer. $x=2.$ \item $y = (2 x+6)\cdot \sqrt{x^2-8 x+12}$, \quad $y'=\dfrac{2 x (2 x-9)}{\sqrt{x^2-8 x+12}}$. \hfill Answer. $x=0.$ \item $y = (2 x+6)\cdot \sqrt{x^2-11 x+28}$, \quad $y'=\dfrac{4 x^2-27 x+23}{\sqrt{x^2-11 x+28}}$. \hfill Answer. $x=1.$ \item $y = (2 x+7)\cdot \sqrt{x^2-1}$, \quad $y'=\dfrac{4 x^2+7 x-2}{\sqrt{x^2-1}}$. \hfill Answer. $x=-2.$ \item $y = (2 x+7)\cdot \sqrt{x^2-14 x+40}$, \quad $y'=\dfrac{4 x^2-35 x+31}{\sqrt{x^2-14 x+40}}$. \hfill Answer. $x=1.$ \item $y = (2 x+8)\cdot \sqrt{x^2-6 x+5}$, \quad $y'=\dfrac{2 \left(2 x^2-5 x-7\right)}{\sqrt{x^2-6 x+5}}$. \hfill Answer. $x=-1.$ \item $y = (2 x+8)\cdot \sqrt{x^2-9 x+18}$, \quad $y'=\dfrac{x (4 x-19)}{\sqrt{x^2-9 x+18}}$. \hfill Answer. $x=0.$ \item $y = (2 x+9)\cdot \sqrt{x^2-12 x+27}$, \quad $y'=\dfrac{x (4 x-27)}{\sqrt{x^2-12 x+27}}$. \hfill Answer. $x=0.$ \item $y = (2 x+10)\cdot \sqrt{x^2-7 x+10}$, \quad $y'=\dfrac{4 x^2-11 x-15}{\sqrt{x^2-7 x+10}}$. \hfill Answer. $x=-1.$ \item $y = (3 x-5)\cdot \sqrt{x^2+8 x+15}$, \quad $y'=\dfrac{6 x^2+31 x+25}{\sqrt{x^2+8 x+15}}$. \hfill Answer. $x=-1.$ \item $y = (3 x-5)\cdot \sqrt{x^2+6 x+5}$, \quad $y'=\dfrac{2 x (3 x+11)}{\sqrt{x^2+6 x+5}}$. \hfill Answer. $x=0.$ \item $y = (3 x-5)\cdot \sqrt{x^2-9 x+20}$, \quad $y'=\dfrac{12 x^2-91 x+165}{2 \sqrt{x^2-9 x+20}}$. \hfill Answer. $x=3.$ \item $y = (3 x-4)\cdot \sqrt{x^2+3 x+2}$, \quad $y'=\dfrac{x (12 x+19)}{2 \sqrt{x^2+3 x+2}}$. \hfill Answer. $x=0.$ \item $y = (3 x-4)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{2 \left(3 x^2-29 x+60\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=3.$ \item $y = (3 x-4)\cdot \sqrt{x^2-14 x+48}$, \quad $y'=\dfrac{6 x^2-67 x+172}{\sqrt{x^2-14 x+48}}$. \hfill Answer. $x=4.$ \item $y = (3 x-3)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{3 \left(2 x^2-25 x+68\right)}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=4.$ \item $y = (3 x-2)\cdot \sqrt{x^2-7 x+12}$, \quad $y'=\dfrac{12 x^2-67 x+86}{2 \sqrt{x^2-7 x+12}}$. \hfill Answer. $x=2.$ \item $y = (3 x-1)\cdot \sqrt{x^2+5 x+6}$, \quad $y'=\dfrac{12 x^2+43 x+31}{2 \sqrt{x^2+5 x+6}}$. \hfill Answer. $x=-1.$ \item $y = (3 x-1)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{6 x^2-46 x+68}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=2.$ \item $y = (3 x-1)\cdot \sqrt{x^2-12 x+35}$, \quad $y'=\dfrac{6 x^2-55 x+111}{\sqrt{x^2-12 x+35}}$. \hfill Answer. $x=3.$ \item $y = (3 x+1)\cdot \sqrt{x^2-5 x+6}$, \quad $y'=\dfrac{12 x^2-43 x+31}{2 \sqrt{x^2-5 x+6}}$. \hfill Answer. $x=1.$ \item $y = (3 x+2)\cdot \sqrt{x^2+7 x+12}$, \quad $y'=\dfrac{12 x^2+67 x+86}{2 \sqrt{x^2+7 x+12}}$. \hfill Answer. $x=-2.$ \item $y = (3 x+2)\cdot \sqrt{x^2-8 x+12}$, \quad $y'=\dfrac{6 x^2-34 x+28}{\sqrt{x^2-8 x+12}}$. \hfill Answer. $x=1.$ \item $y = (3 x+2)\cdot \sqrt{x^2-10 x+24}$, \quad $y'=\dfrac{6 x^2-43 x+62}{\sqrt{x^2-10 x+24}}$. \hfill Answer. $x=2.$ \item $y = (3 x+3)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{6 x^2-51 x+78}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (3 x+3)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{3 \left(4 x^2-43 x+93\right)}{2 \sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (3 x+4)\cdot \sqrt{x^2-3 x+2}$, \quad $y'=\dfrac{x (12 x-19)}{2 \sqrt{x^2-3 x+2}}$. \hfill Answer. $x=0.$ \item $y = (3 x+5)\cdot \sqrt{x^2+9 x+20}$, \quad $y'=\dfrac{12 x^2+91 x+165}{2 \sqrt{x^2+9 x+20}}$. \hfill Answer. $x=-3.$ \item $y = (3 x+5)\cdot \sqrt{x^2-6 x+5}$, \quad $y'=\dfrac{2 x (3 x-11)}{\sqrt{x^2-6 x+5}}$. \hfill Answer. $x=0.$ \item $y = (3 x+5)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{6 x^2-31 x+25}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=1.$ \item $y = (3 x+6)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{6 x^2-39 x+33}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=1.$ \item $y = (3 x+6)\cdot \sqrt{x^2-13 x+40}$, \quad $y'=\dfrac{3 \left(4 x^2-35 x+54\right)}{2 \sqrt{x^2-13 x+40}}$. \hfill Answer. $x=2.$ \item $y = (3 x+8)\cdot \sqrt{x^2-6 x+8}$, \quad $y'=\dfrac{x (6 x-19)}{\sqrt{x^2-6 x+8}}$. \hfill Answer. $x=0.$ \item $y = (3 x+9)\cdot \sqrt{x^2-8 x+12}$, \quad $y'=\dfrac{3 x (2 x-9)}{\sqrt{x^2-8 x+12}}$. \hfill Answer. $x=0.$ \item $y = (3 x+9)\cdot \sqrt{x^2-11 x+28}$, \quad $y'=\dfrac{3 \left(4 x^2-27 x+23\right)}{2 \sqrt{x^2-11 x+28}}$. \hfill Answer. $x=1.$ \item $y = (3 x+10)\cdot \sqrt{x^2-12 x+20}$, \quad $y'=\dfrac{2 x (3 x-22)}{\sqrt{x^2-12 x+20}}$. \hfill Answer. $x=0.$ \item $y = (3 x+10)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{2 \left(3 x^2-31 x+50\right)}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=2.$ \item $y = (4 x-5)\cdot \sqrt{x^2-14 x+40}$, \quad $y'=\dfrac{8 x^2-89 x+195}{\sqrt{x^2-14 x+40}}$. \hfill Answer. $x=3.$ \item $y = (4 x-5)\cdot \sqrt{x^2-18 x+80}$, \quad $y'=\dfrac{8 x^2-113 x+365}{\sqrt{x^2-18 x+80}}$. \hfill Answer. $x=5.$ \item $y = (4 x-4)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{4 \left(2 x^2-25 x+68\right)}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=4.$ \item $y = (4 x-2)\cdot \sqrt{x^2+6 x+8}$, \quad $y'=\dfrac{8 x^2+34 x+26}{\sqrt{x^2+6 x+8}}$. \hfill Answer. $x=-1.$ \item $y = (4 x-2)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{8 x^2-50 x+68}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=2.$ \item $y = (4 x-1)\cdot \sqrt{x^2-12 x+27}$, \quad $y'=\dfrac{8 x^2-73 x+114}{\sqrt{x^2-12 x+27}}$. \hfill Answer. $x=2.$ \item $y = (4 x-1)\cdot \sqrt{x^2-16 x+63}$, \quad $y'=\dfrac{8 x^2-97 x+260}{\sqrt{x^2-16 x+63}}$. \hfill Answer. $x=4.$ \item $y = (4 x+2)\cdot \sqrt{x^2+8 x+15}$, \quad $y'=\dfrac{8 x^2+50 x+68}{\sqrt{x^2+8 x+15}}$. \hfill Answer. $x=-2.$ \item $y = (4 x+2)\cdot \sqrt{x^2-6 x+8}$, \quad $y'=\dfrac{8 x^2-34 x+26}{\sqrt{x^2-6 x+8}}$. \hfill Answer. $x=1.$ \item $y = (4 x+3)\cdot \sqrt{x^2-10 x+16}$, \quad $y'=\dfrac{8 x^2-57 x+49}{\sqrt{x^2-10 x+16}}$. \hfill Answer. $x=1.$ \item $y = (4 x+3)\cdot \sqrt{x^2-14 x+48}$, \quad $y'=\dfrac{8 x^2-81 x+171}{\sqrt{x^2-14 x+48}}$. \hfill Answer. $x=3.$ \item $y = (4 x+4)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{4 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (4 x+4)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{2 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (4 x+6)\cdot \sqrt{x^2-4 x+3}$, \quad $y'=\dfrac{2 x (4 x-9)}{\sqrt{x^2-4 x+3}}$. \hfill Answer. $x=0.$ \item $y = (4 x+7)\cdot \sqrt{x^2-8 x+7}$, \quad $y'=\dfrac{x (8 x-41)}{\sqrt{x^2-8 x+7}}$. \hfill Answer. $x=0.$ \item $y = (4 x+7)\cdot \sqrt{x^2-12 x+35}$, \quad $y'=\dfrac{8 x^2-65 x+98}{\sqrt{x^2-12 x+35}}$. \hfill Answer. $x=2.$ \item $y = (4 x+8)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{8 x^2-52 x+44}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=1.$ \item $y = (4 x+8)\cdot \sqrt{x^2-13 x+40}$, \quad $y'=\dfrac{2 \left(4 x^2-35 x+54\right)}{\sqrt{x^2-13 x+40}}$. \hfill Answer. $x=2.$ \item $y = (5 x-5)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{5 \left(2 x^2-25 x+68\right)}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=4.$ \item $y = (5 x-3)\cdot \sqrt{x^2+7 x+10}$, \quad $y'=\dfrac{20 x^2+99 x+79}{2 \sqrt{x^2+7 x+10}}$. \hfill Answer. $x=-1.$ \item $y = (5 x-3)\cdot \sqrt{x^2-11 x+30}$, \quad $y'=\dfrac{20 x^2-171 x+333}{2 \sqrt{x^2-11 x+30}}$. \hfill Answer. $x=3.$ \item $y = (5 x-2)\cdot \sqrt{x^2+9 x+20}$, \quad $y'=\dfrac{20 x^2+131 x+182}{2 \sqrt{x^2+9 x+20}}$. \hfill Answer. $x=-2.$ \item $y = (5 x-2)\cdot \sqrt{x^2-9 x+18}$, \quad $y'=\dfrac{20 x^2-139 x+198}{2 \sqrt{x^2-9 x+18}}$. \hfill Answer. $x=2.$ \item $y = (5 x+2)\cdot \sqrt{x^2-9 x+20}$, \quad $y'=\dfrac{20 x^2-131 x+182}{2 \sqrt{x^2-9 x+20}}$. \hfill Answer. $x=2.$ \item $y = (5 x+3)\cdot \sqrt{x^2-7 x+10}$, \quad $y'=\dfrac{20 x^2-99 x+79}{2 \sqrt{x^2-7 x+10}}$. \hfill Answer. $x=1.$ \item $y = (5 x+4)\cdot \sqrt{x^2-12 x+20}$, \quad $y'=\dfrac{2 \left(5 x^2-43 x+38\right)}{\sqrt{x^2-12 x+20}}$. \hfill Answer. $x=1.$ \item $y = (5 x+4)\cdot \sqrt{x^2-18 x+80}$, \quad $y'=\dfrac{10 x^2-131 x+364}{\sqrt{x^2-18 x+80}}$. \hfill Answer. $x=4.$ \item $y = (5 x+5)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{5 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (5 x+5)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{2 \sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (5 x+6)\cdot \sqrt{x^2-14 x+40}$, \quad $y'=\dfrac{10 x^2-99 x+158}{\sqrt{x^2-14 x+40}}$. \hfill Answer. $x=2.$ \item $y = (5 x+6)\cdot \sqrt{x^2-16 x+60}$, \quad $y'=\dfrac{2 \left(5 x^2-57 x+126\right)}{\sqrt{x^2-16 x+60}}$. \hfill Answer. $x=3.$ \item $y = (5 x+7)\cdot \sqrt{x^2-7 x+12}$, \quad $y'=\dfrac{20 x^2-91 x+71}{2 \sqrt{x^2-7 x+12}}$. \hfill Answer. $x=1.$ \item $y = (5 x+8)\cdot \sqrt{x^2-5 x+4}$, \quad $y'=\dfrac{x (20 x-59)}{2 \sqrt{x^2-5 x+4}}$. \hfill Answer. $x=0.$ \item $y = (5 x+9)\cdot \sqrt{x^2-10 x+9}$, \quad $y'=\dfrac{2 x (5 x-33)}{\sqrt{x^2-10 x+9}}$. \hfill Answer. $x=0.$ \item $y = (5 x+9)\cdot \sqrt{x^2-16 x+63}$, \quad $y'=\dfrac{10 x^2-111 x+243}{\sqrt{x^2-16 x+63}}$. \hfill Answer. $x=3.$ \item $y = (5 x+10)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{5 \left(2 x^2-13 x+11\right)}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=1.$ \item $y = (5 x+10)\cdot \sqrt{x^2-13 x+40}$, \quad $y'=\dfrac{5 \left(4 x^2-35 x+54\right)}{2 \sqrt{x^2-13 x+40}}$. \hfill Answer. $x=2.$ \item $y = (6 x-4)\cdot \sqrt{x^2-7 x+12}$, \quad $y'=\dfrac{12 x^2-67 x+86}{\sqrt{x^2-7 x+12}}$. \hfill Answer. $x=2.$ \item $y = (6 x-3)\cdot \sqrt{x^2+6 x+8}$, \quad $y'=\dfrac{3 \left(4 x^2+17 x+13\right)}{\sqrt{x^2+6 x+8}}$. \hfill Answer. $x=-1.$ \item $y = (6 x-3)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{3 \left(4 x^2-25 x+34\right)}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=2.$ \item $y = (6 x-2)\cdot \sqrt{x^2+5 x+6}$, \quad $y'=\dfrac{12 x^2+43 x+31}{\sqrt{x^2+5 x+6}}$. \hfill Answer. $x=-1.$ \item $y = (6 x-2)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{4 \left(3 x^2-23 x+34\right)}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=2.$ \item $y = (6 x-2)\cdot \sqrt{x^2-12 x+35}$, \quad $y'=\dfrac{2 \left(6 x^2-55 x+111\right)}{\sqrt{x^2-12 x+35}}$. \hfill Answer. $x=3.$ \item $y = (6 x+2)\cdot \sqrt{x^2-5 x+6}$, \quad $y'=\dfrac{12 x^2-43 x+31}{\sqrt{x^2-5 x+6}}$. \hfill Answer. $x=1.$ \item $y = (6 x+3)\cdot \sqrt{x^2+8 x+15}$, \quad $y'=\dfrac{3 \left(4 x^2+25 x+34\right)}{\sqrt{x^2+8 x+15}}$. \hfill Answer. $x=-2.$ \item $y = (6 x+3)\cdot \sqrt{x^2-6 x+8}$, \quad $y'=\dfrac{3 \left(4 x^2-17 x+13\right)}{\sqrt{x^2-6 x+8}}$. \hfill Answer. $x=1.$ \item $y = (6 x+4)\cdot \sqrt{x^2+7 x+12}$, \quad $y'=\dfrac{12 x^2+67 x+86}{\sqrt{x^2+7 x+12}}$. \hfill Answer. $x=-2.$ \item $y = (6 x+4)\cdot \sqrt{x^2-8 x+12}$, \quad $y'=\dfrac{4 \left(3 x^2-17 x+14\right)}{\sqrt{x^2-8 x+12}}$. \hfill Answer. $x=1.$ \item $y = (6 x+4)\cdot \sqrt{x^2-10 x+24}$, \quad $y'=\dfrac{2 \left(6 x^2-43 x+62\right)}{\sqrt{x^2-10 x+24}}$. \hfill Answer. $x=2.$ \item $y = (6 x+6)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{6 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (6 x+6)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{3 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (6 x+8)\cdot \sqrt{x^2-3 x+2}$, \quad $y'=\dfrac{x (12 x-19)}{\sqrt{x^2-3 x+2}}$. \hfill Answer. $x=0.$ \item $y = (6 x+9)\cdot \sqrt{x^2-4 x+3}$, \quad $y'=\dfrac{3 x (4 x-9)}{\sqrt{x^2-4 x+3}}$. \hfill Answer. $x=0.$ \item $y = (6 x+10)\cdot \sqrt{x^2+9 x+20}$, \quad $y'=\dfrac{12 x^2+91 x+165}{\sqrt{x^2+9 x+20}}$. \hfill Answer. $x=-3.$ \item $y = (6 x+10)\cdot \sqrt{x^2-6 x+5}$, \quad $y'=\dfrac{4 x (3 x-11)}{\sqrt{x^2-6 x+5}}$. \hfill Answer. $x=0.$ \item $y = (6 x+10)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{2 \left(6 x^2-31 x+25\right)}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=1.$ \item $y = (7 x-4)\cdot \sqrt{x^2-15 x+56}$, \quad $y'=\dfrac{28 x^2-323 x+844}{2 \sqrt{x^2-15 x+56}}$. \hfill Answer. $x=4.$ \item $y = (7 x-2)\cdot \sqrt{x^2-11 x+24}$, \quad $y'=\dfrac{28 x^2-235 x+358}{2 \sqrt{x^2-11 x+24}}$. \hfill Answer. $x=2.$ \item $y = (7 x-1)\cdot \sqrt{x^2-13 x+40}$, \quad $y'=\dfrac{28 x^2-275 x+573}{2 \sqrt{x^2-13 x+40}}$. \hfill Answer. $x=3.$ \item $y = (7 x+3)\cdot \sqrt{x^2-13 x+42}$, \quad $y'=\dfrac{28 x^2-267 x+549}{2 \sqrt{x^2-13 x+42}}$. \hfill Answer. $x=3.$ \item $y = (7 x+5)\cdot \sqrt{x^2-9 x+14}$, \quad $y'=\dfrac{28 x^2-179 x+151}{2 \sqrt{x^2-9 x+14}}$. \hfill Answer. $x=1.$ \item $y = (7 x+6)\cdot \sqrt{x^2-11 x+28}$, \quad $y'=\dfrac{28 x^2-219 x+326}{2 \sqrt{x^2-11 x+28}}$. \hfill Answer. $x=2.$ \item $y = (7 x+7)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{7 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (7 x+7)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{7 \left(4 x^2-43 x+93\right)}{2 \sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (7 x+10)\cdot \sqrt{x^2-11 x+30}$, \quad $y'=\dfrac{28 x^2-211 x+310}{2 \sqrt{x^2-11 x+30}}$. \hfill Answer. $x=2.$ \item $y = (8 x-4)\cdot \sqrt{x^2+6 x+8}$, \quad $y'=\dfrac{4 \left(4 x^2+17 x+13\right)}{\sqrt{x^2+6 x+8}}$. \hfill Answer. $x=-1.$ \item $y = (8 x-4)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{4 \left(4 x^2-25 x+34\right)}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=2.$ \item $y = (8 x-2)\cdot \sqrt{x^2-12 x+27}$, \quad $y'=\dfrac{2 \left(8 x^2-73 x+114\right)}{\sqrt{x^2-12 x+27}}$. \hfill Answer. $x=2.$ \item $y = (8 x-2)\cdot \sqrt{x^2-16 x+63}$, \quad $y'=\dfrac{2 \left(8 x^2-97 x+260\right)}{\sqrt{x^2-16 x+63}}$. \hfill Answer. $x=4.$ \item $y = (8 x+4)\cdot \sqrt{x^2+8 x+15}$, \quad $y'=\dfrac{4 \left(4 x^2+25 x+34\right)}{\sqrt{x^2+8 x+15}}$. \hfill Answer. $x=-2.$ \item $y = (8 x+4)\cdot \sqrt{x^2-6 x+8}$, \quad $y'=\dfrac{4 \left(4 x^2-17 x+13\right)}{\sqrt{x^2-6 x+8}}$. \hfill Answer. $x=1.$ \item $y = (8 x+6)\cdot \sqrt{x^2-10 x+16}$, \quad $y'=\dfrac{2 \left(8 x^2-57 x+49\right)}{\sqrt{x^2-10 x+16}}$. \hfill Answer. $x=1.$ \item $y = (8 x+6)\cdot \sqrt{x^2-14 x+48}$, \quad $y'=\dfrac{2 \left(8 x^2-81 x+171\right)}{\sqrt{x^2-14 x+48}}$. \hfill Answer. $x=3.$ \item $y = (8 x+8)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{8 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (8 x+8)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{4 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (9 x-5)\cdot \sqrt{x^2-19 x+90}$, \quad $y'=\dfrac{36 x^2-523 x+1715}{2 \sqrt{x^2-19 x+90}}$. \hfill Answer. $x=5.$ \item $y = (9 x-3)\cdot \sqrt{x^2+5 x+6}$, \quad $y'=\dfrac{3 \left(12 x^2+43 x+31\right)}{2 \sqrt{x^2+5 x+6}}$. \hfill Answer. $x=-1.$ \item $y = (9 x-3)\cdot \sqrt{x^2-10 x+21}$, \quad $y'=\dfrac{6 \left(3 x^2-23 x+34\right)}{\sqrt{x^2-10 x+21}}$. \hfill Answer. $x=2.$ \item $y = (9 x-3)\cdot \sqrt{x^2-12 x+35}$, \quad $y'=\dfrac{3 \left(6 x^2-55 x+111\right)}{\sqrt{x^2-12 x+35}}$. \hfill Answer. $x=3.$ \item $y = (9 x-2)\cdot \sqrt{x^2-13 x+30}$, \quad $y'=\dfrac{36 x^2-355 x+566}{2 \sqrt{x^2-13 x+30}}$. \hfill Answer. $x=2.$ \item $y = (9 x+1)\cdot \sqrt{x^2-15 x+50}$, \quad $y'=\dfrac{36 x^2-403 x+885}{2 \sqrt{x^2-15 x+50}}$. \hfill Answer. $x=3.$ \item $y = (9 x+3)\cdot \sqrt{x^2-5 x+6}$, \quad $y'=\dfrac{3 \left(12 x^2-43 x+31\right)}{2 \sqrt{x^2-5 x+6}}$. \hfill Answer. $x=1.$ \item $y = (9 x+4)\cdot \sqrt{x^2-17 x+72}$, \quad $y'=\dfrac{36 x^2-451 x+1228}{2 \sqrt{x^2-17 x+72}}$. \hfill Answer. $x=4.$ \item $y = (9 x+6)\cdot \sqrt{x^2+7 x+12}$, \quad $y'=\dfrac{3 \left(12 x^2+67 x+86\right)}{2 \sqrt{x^2+7 x+12}}$. \hfill Answer. $x=-2.$ \item $y = (9 x+6)\cdot \sqrt{x^2-8 x+12}$, \quad $y'=\dfrac{6 \left(3 x^2-17 x+14\right)}{\sqrt{x^2-8 x+12}}$. \hfill Answer. $x=1.$ \item $y = (9 x+6)\cdot \sqrt{x^2-10 x+24}$, \quad $y'=\dfrac{3 \left(6 x^2-43 x+62\right)}{\sqrt{x^2-10 x+24}}$. \hfill Answer. $x=2.$ \item $y = (9 x+7)\cdot \sqrt{x^2-11 x+18}$, \quad $y'=\dfrac{36 x^2-283 x+247}{2 \sqrt{x^2-11 x+18}}$. \hfill Answer. $x=1.$ \item $y = (9 x+9)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{9 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (9 x+9)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{9 \left(4 x^2-43 x+93\right)}{2 \sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$ \item $y = (9 x+10)\cdot \sqrt{x^2-13 x+36}$, \quad $y'=\dfrac{36 x^2-331 x+518}{2 \sqrt{x^2-13 x+36}}$. \hfill Answer. $x=2.$ \item $y = (10 x-5)\cdot \sqrt{x^2+6 x+8}$, \quad $y'=\dfrac{5 \left(4 x^2+17 x+13\right)}{\sqrt{x^2+6 x+8}}$. \hfill Answer. $x=-1.$ \item $y = (10 x-5)\cdot \sqrt{x^2-8 x+15}$, \quad $y'=\dfrac{5 \left(4 x^2-25 x+34\right)}{\sqrt{x^2-8 x+15}}$. \hfill Answer. $x=2.$ \item $y = (10 x-4)\cdot \sqrt{x^2+9 x+20}$, \quad $y'=\dfrac{20 x^2+131 x+182}{\sqrt{x^2+9 x+20}}$. \hfill Answer. $x=-2.$ \item $y = (10 x-4)\cdot \sqrt{x^2-9 x+18}$, \quad $y'=\dfrac{20 x^2-139 x+198}{\sqrt{x^2-9 x+18}}$. \hfill Answer. $x=2.$ \item $y = (10 x+4)\cdot \sqrt{x^2-9 x+20}$, \quad $y'=\dfrac{20 x^2-131 x+182}{\sqrt{x^2-9 x+20}}$. \hfill Answer. $x=2.$ \item $y = (10 x+5)\cdot \sqrt{x^2+8 x+15}$, \quad $y'=\dfrac{5 \left(4 x^2+25 x+34\right)}{\sqrt{x^2+8 x+15}}$. \hfill Answer. $x=-2.$ \item $y = (10 x+5)\cdot \sqrt{x^2-6 x+8}$, \quad $y'=\dfrac{5 \left(4 x^2-17 x+13\right)}{\sqrt{x^2-6 x+8}}$. \hfill Answer. $x=1.$ \item $y = (10 x+6)\cdot \sqrt{x^2-7 x+10}$, \quad $y'=\dfrac{20 x^2-99 x+79}{\sqrt{x^2-7 x+10}}$. \hfill Answer. $x=1.$ \item $y = (10 x+8)\cdot \sqrt{x^2-12 x+20}$, \quad $y'=\dfrac{4 \left(5 x^2-43 x+38\right)}{\sqrt{x^2-12 x+20}}$. \hfill Answer. $x=1.$ \item $y = (10 x+8)\cdot \sqrt{x^2-18 x+80}$, \quad $y'=\dfrac{20 x^2-262 x+728}{\sqrt{x^2-18 x+80}}$. \hfill Answer. $x=4.$ \item $y = (10 x+10)\cdot \sqrt{x^2-12 x+32}$, \quad $y'=\dfrac{10 \left(2 x^2-17 x+26\right)}{\sqrt{x^2-12 x+32}}$. \hfill Answer. $x=2.$ \item $y = (10 x+10)\cdot \sqrt{x^2-15 x+54}$, \quad $y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. \hfill Answer. $x=3.$
\end{enumerate}
\end{document}
现在我想对齐导数。我试过了
\documentclass{article}
\usepackage{amsmath}
\usepackage{longtable}
\usepackage{booktabs}
\begin{document}
\begin{longtable}{p{0.5cm}p{5cm}p{5cm}p{3cm}}
\toprule
Oder& The function & Derivative of the function & Solution of Derivative \\
\midrule
1&$y = (10 x+10)\cdot \sqrt{x^2-15 x+54}$ & $y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. & $x=3.$ \\
2&$y = (10 x+10)\cdot \sqrt{x^2-15 x+54}$ & $y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. & $x=3.$ \\
3& $y = (10 x+10)\cdot \sqrt{x^2-15 x+54}$ & $y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}$. & $x=3.$ \\
4& $y = (10 x+8)\cdot \sqrt{x^2-18 x+80}$. & $y'=\dfrac{20 x^2-262 x+728}{\sqrt{x^2-18 x+80}}$& $x=4.$\\
\bottomrule
\end{longtable}
\end{document}
我怎样才能对齐这个枚举?
答案1
您需要使表格适合文本块。一些建议/意见:
似乎没有必要使用固定宽度的列。请使用
c
。将重复的信息 — —
y=
、y'=
和x=
— — 从正文中移出并移至页眉中。省略所有标点符号和
\cdot
指令。这样做将有助于使表格看起来更整洁。通过说明在行之间插入更多一点的空间
\addlinespace
。
\documentclass{article}
\usepackage{amsmath,longtable,booktabs,array}
\newcolumntype{C}{>{$}c<{$}} % automatic-mathmode version of "c"
\begin{document}
\begin{longtable}{@{}lCCC@{}}
\toprule
Order& \text{Function $y$} & \text{Derivative $y'$} & \text{Solution $x$} \\
\midrule
1 & (10 x+10) \sqrt{x^2-15 x+54} & \dfrac{5 (4 x^2-43 x+93)}{\sqrt{x^2-15 x+54}} & 3 \\
\addlinespace
2 & (10 x+10) \sqrt{x^2-15 x+54} & \dfrac{5 (4 x^2-43 x+93)}{\sqrt{x^2-15 x+54}} & 3 \\
\addlinespace
3 & (10 x+10) \sqrt{x^2-15 x+54} & \dfrac{5 (4 x^2-43 x+93)}{\sqrt{x^2-15 x+54}} & 3 \\
\addlinespace
4 & (10 x+8) \sqrt{x^2-18 x+80} & \dfrac{20 x^2-262 x+728}{\sqrt{x^2-18 x+80}} & 4 \\
\bottomrule
\end{longtable}
\end{document}
附录:这是 的一个版本,其longtable
(a) 自动在第一列插入行号,并且 (b) 通过 、 、 和 指令提供更多结构\endfirsthead
。\endhead
(\endfoot
当然 \endlastfoot
,\endfoot
和\endhead
指令在下面显示的示例代码中不起作用,因为整个表格适合放在一页上。)
\documentclass{article}
\usepackage{amsmath,longtable,booktabs,array,etoolbox}
\newcolumntype{C}{>{$\displaystyle}c<{$}} % automatic math mode version of "c"
\newcounter{rownum}
\newcolumntype{N}{>{\stepcounter{rownum}\therownum}l}
\AtBeginEnvironment{longtable}{\setcounter{rownum}{0}}
\begin{document}
\begin{longtable}{@{} N CCC @{}}
%% Header information, first page
\toprule
\multicolumn{1}{@{}l}{Order}& \text{Function $y(x)$} & \text{Derivative $y'(x)$} & \text{Value of $x$ for} \\
\multicolumn{1}{@{}l}{} & & & \text{which $y'=0$} \\
\midrule
\endfirsthead
%% Header information, all pages but first
\multicolumn{4}{@{}l}{\footnotesize\em(continued from previous page)}\\
\midrule[\heavyrulewidth]
\multicolumn{1}{@{}l}{Order}& \text{Function $y(x)$} & \text{Derivative $y'(x)$} & \text{Value of $x$ for} \\
\multicolumn{1}{@{}l}{} & & & \text{which $y'=0$}\\
\midrule
\endhead
%% Footer information, all pages but final page
\midrule[\heavyrulewidth]
\multicolumn{4}{r@{}}{\footnotesize\em(continued on following page)}\\
\endfoot
%% Footer information, final page
\bottomrule
\endlastfoot
%% Body of longtable
& (10 x+10) \sqrt{x^2-15 x+54} & \frac{5 (4 x^2-43 x+93)}{\sqrt{x^2-15 x+54}} & 3 \\
\addlinespace
& (10 x+10) \sqrt{x^2-15 x+54} & \frac{5 (4 x^2-43 x+93)}{\sqrt{x^2-15 x+54}} & 3 \\
\addlinespace
& (10 x+10) \sqrt{x^2-15 x+54} & \frac{5 (4 x^2-43 x+93)}{\sqrt{x^2-15 x+54}} & 3 \\
\addlinespace
& (10 x+8) \sqrt{x^2-18 x+80} & \frac{20 x^2-262 x+728}{\sqrt{x^2-18 x+80}} & 4\\
\end{longtable}
\end{document}
答案2
Mico 答案的一个变体:
\documentclass{article}
\usepackage{amsmath}
\usepackage{array,booktabs,makecell,longtable}
\newcommand\mc[1]{\multicolumn{1}{c}{\text{#1}}}
\newcounter{order}
\newcommand{\order}{\stepcounter{order}\theorder}
\usepackage{showframe}
\renewcommand*\ShowFrameColor{\color{red}}
\begin{document}
{% <-- for limiting \setcellgapes{3pt}\makegapedcells to this table only
\setcellgapes{3pt}
\makegapedcells
\begin{longtable}{>{\order}c
*{3}{>{$}l<{$}}
}
\toprule
\mc{Oder}
& \mc{Function}
& \mc{Derivative}
& \mc{Solution} \\
\midrule
& y = (10 x+10) \sqrt{x^2-15 x+54}
& y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}
& x=3 \\
& y = (10 x+10) \sqrt{x^2-15 x+54}
& y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}
& x=3 \\
& y = (10 x+10) \sqrt{x^2-15 x+54}
& y'=\dfrac{5 \left(4 x^2-43 x+93\right)}{\sqrt{x^2-15 x+54}}
& x=3 \\
& y = (10 x+8) \sqrt{x^2-18 x+80}
& y'=\dfrac{20 x^2-262 x+728}{\sqrt{x^2-18 x+80}}
& x=4 \\
\bottomrule
\end{longtable}
}
\end{document}
为了节省空间,我使用了包\setcellgapes{3pt} \makegapedcells
中的宏\makecells
,用于对方程式服务宏进行编号order
。其他的与 Mivo 答案相同。