添加

添加

我目前有

\documentclass[10pt]{article}
\usepackage[text={7.2in,9.6in}]{geometry}
\geometry{letterpaper}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}

\begin{document}
\begin{description}
\item[Problem 8~]
A woman starts at a point $P$.

\begin{proof}[Response]
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point
\end{proof}
\end{description}

\begin{proof}[Response]
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point
\end{proof}
\end{document}

其结果如下:

在此处输入图片描述

我的目标是让描述环境内的证明环境中的“响应”中的第二段缩进,就像它在描述环境之外一样。

我想问题可能出在我使用geometry包的方式上,但我不确定。有没有办法在 description 环境中的 proof 环境中的新换行符后缩进第二段(并且不添加空格)?

答案1

不,geometry这没有任何作用。问题在于proof内部使用trivlist,它从封闭环境中继承了一些参数description

您可以定义自己的恢复相关参数的环境。

\documentclass[10pt]{article}
\usepackage[text={7.2in,9.6in}]{geometry}
\geometry{letterpaper}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}

\newlength{\normalparindent}
\newlength{\normalparskip}
\AtBeginDocument{%
  \setlength{\normalparindent}{\parindent}%
  \setlength{\normalparskip}{\parskip}%
}

\newenvironment{response}
 {\proof[Response]%
  \setlength{\parskip}{\normalparskip}%
  \setlength{\parindent}{\normalparindent}}
 {\endproof}

\begin{document}
\begin{description}
\item[Problem 8~]
A woman starts at a point $P$.

\begin{response}
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point
\end{response}
\end{description}

\begin{response}
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point
\end{response}
\end{document}

在此处输入图片描述

答案2

或者,使用以下enumitem包:

\documentclass[10pt]{article}
\usepackage[text={7.2in,9.6in}]{geometry}
\geometry{letterpaper}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{enumitem}

\begin{document}
\begin{description}[listparindent=\parindent,parsep=0pt]
\item[Problem 8~]
A woman starts at a point $P$.

\begin{proof}[Response]
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point\ldots

One additional paragraph.
\end{proof}
\end{description}

\begin{proof}[Response]
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point
\end{proof}
\end{document}

为了完整起见,这里是输出:

代码输出


添加

一个更好的解决方案是创建自定义的“description类似”环境:

\documentclass[10pt]{article}
\usepackage[text={7.2in,9.6in}]{geometry}
\geometry{letterpaper}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage{enumitem}

\newlist{DWRdescription}{description}{1} % <<< Increase last argument if you 
                                         %     need to nest "DWRdescription" 
                                         %     environments.
\setlist[DWRdescription]{listparindent=\parindent,parsep=0pt}



\begin{document}

\begin{DWRdescription}
    
\item[Problem 8~]
A woman starts at a point $P$.

\begin{proof}[Response]
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point\ldots

One additional paragraph.
\end{proof}

\end{DWRdescription}

\begin{proof}[Response]
The north pole is such a point. And there are others: 
Consider a point $a_1$ near the south pole such that 
the parallel passing through $a_1$ forms a 
circle $C_1$ with circumference exactly one mile.

If a point $a_2$ (or $a_3, a_4, \ldots$) is chosen 
near the south pole so that the parallel passing 
through it forms a circle $C_2$ ($C_3, C_4, \ldots$) 
with a circumference of exactly $\frac{1}{2}$ mile 
($\frac{1}{3}$ mile, $\frac{1}{4}$ mile, \ldots), 
then the point
\end{proof}
\end{document}

输出应该与之前完全相同。

相关内容